
MAIS 23

and the program office must either pay sharply increased
costs to continue the support or move to the new version with
associated changes. At other times, world events and doctrine
changes drive the requirements to change (e.g., a system that
was intended for use in conventional warfare may need new
functions to be used in counterinsurgency warfare). In either
case, changes in requirements necessitate changes in software,
causing disruptions in the development cycle.

Best Practices
These challenges may be mitigated through MAIS program best
practices. In the process of overseeing the operational testing of
systems under DOT&E oversight, DOT&E noted the following
10 practices that produced observable benefits to the programs.

Robust Senior-Level Participation
Robust and continued senior-level attention and participation
contributed significantly to the success of agile acquisition MAIS
programs like the Army’s Logistics Modernization Program
(LMP), Global Combat Support System – Army (GCSS-A),
and GCSS – Joint (GCSS J). Senior leader support was key
for securing necessary resources, enforcing updated business
processes, and shortening decision cycles.
•	 Resource help. Agile programs tend to have relatively

short delivery cycles. This often means short development-
test-deployment cycles. Executing such agile cycles is
resource-intensive for the entire acquisition team. A typical
agile program deploys an approved release, develops the
current release, and plans for the next release, all at the same
time. To support such concurrent acquisition cycles, testers
must simultaneously prepare evaluation reports from the last
release, execute and witness test events for the current release,
and conduct risk assessment and plan test events for the next
release. One test team usually cannot adequately plan test,
and report simultaneously. To reduce the burden, the GCSS-J
Program Office provided sufficient resources to form two

Introduction
DOT&E oversees operational testing of 30 DOD Major
Automated Information Systems (MAIS) programs.1 Many
MAIS program managers find it challenging to meet cost,
schedule, and performance goals. The U.S. Government
Accountability Office (GAO) reported in 2014 that, “most
selected [MAIS] programs changed their planned cost and
schedule estimates, and over half did not fully meet system
performance targets.”2 The same report stated that of the
15 MAIS programs the GAO studied, “three of the selected
programs reported meeting system performance targets, while
eight reported not fully meeting targets, and four did not have
system performance data available.” All of the 15 programs
that GAO reviewed are on the DOT&E oversight list, and
DOT&E has gained unique insights into MAIS programs through
operational testing.

The purpose of this section is to identify best practices in
MAIS acquisition and provide examples of how those were
implemented by the systems under DOT&E oversight. The DOD
acquisition workforce has sporadically implemented many of
the best practices for MAIS programs. A wider, more consistent
application of the best practices described in this section,
including implementation of an agile acquisition framework,
should help DOD more frequently deliver successful MAIS
programs that perform well during operational testing and in the
field.

Challenges
The challenging nature of MAIS acquisition can be attributed
to many factors, but software acquisition reference materials
often cite complexity and unstable requirements as the most
significant.
•	 Program complexity. DOD MAIS programs tend to be very

complex. Typical MAIS programs have to be integrated into
multiple existing enterprises that contain large numbers of
interfaces with government and commercial entities, each
with its own configuration, database structure, and security
requirements. In addition, the program itself most often is
an integration of large numbers of commercial off-the-shelf
(COTS) and government off-the-shelf (GOTS) components
with existing military and commercial networks. This
complexity is often paired with an acquisition strategy
that requires delivery of a full, mature product in a single
development cycle, which often results in delays and
performance shortfalls.

•	 Unstable requirements. DOD systems often have to deal
with changing requirements. In many cases, the changes
are driven by advancement in technology (e.g., vendors
updating hardware, operating system, or database versions)

Major Automated Information System (MAIS)
Best Practices

F Y 1 6 D O D P R O G R A M S

1	 Section 2445a of title 10, U.S. Code, defines a MAIS program as a DOD
information technology (IT) investment with: 1) program costs in any single
year exceeding $32 Million; 2) total program acquisition costs exceeding
$126 Million; or 3) total life-cycle costs exceeding $378 Million (all in FY00
constant dollars). DOD Instruction (DODI) 5000.02, “Operation of the
Defense Acquisition System,” dated January 7, 2015, updates the dollar figures
to FY14 constant dollars: 1) $40 Million in any single year, 2) $165 Million
total program cost, or 3) $520 Million total life-cycle cost. The Secretary
of Defense and the Milestone Decision Authority can also use discretion to
designate a program as a MAIS.

2	 GAO report GAO-14-309, “Major Automated Information Systems: Selected
Defense Programs Need to Implement Key Acquisition Practices,” March 27,
2014, page 16

F Y 1 6 D O D P R O G R A M S

24 MAIS

test teams so that each team could alternate and focus on one
release at a time.

•	 Enforcement of updated business processes. Users tend
to be comfortable with the business processes or tactics,
techniques, and procedures (TTPs) they have been using.
Unfortunately, new TTPs and business processes are inevitable
with significantly new capabilities for a couple of reasons.
First, new software often will not support established business
processes and TTPs without customization, and the risk
in a MAIS program tends to correspond to the amount of
customization. Customization can cause deviation from
the initial design of the COTS and GOTS software. Such a
change necessitates not only new code writing, but also may
change the way the software interfaces with other systems
or modules. Second, the use of outdated business processes
and TTPs increases the risk of not using the new software
to its maximum value. The advantages of automation are
eliminating manual steps and reducing human decision
points. Some users might resist such automation, but avoiding
automation can negate the benefit of the new technology.
Thus, once decision-makers agree there is a need to change
TTPs and business practices, they must help implement them
by enforcing their use and providing the necessary resources
for training. The Army’s LMP performed well during its
recent operational test in part because of the rigorous user
training the program manager provided well prior to the test.

•	 Shortened decision cycles. The acquisition process for
MAIS programs require OSD-level decisions, which can
often mean lengthy staffing processes. This is very difficult
for programs that deploy more than one release per year.
Many programs successfully developed a model where they
adequately informed decision-makers without lengthy staffing
processes. One such method is simultaneous staffing of
acquisition decisions vice a step-by-step iteration of signature
process. This method is not always practical, but can work
well if senior-level leaders participate in the acquisition. For
instance, LMP Increment 2 grouped seven releases into three
waves. Each wave grouped one to three releases based on
a risk assessment. The acquisition decision makers made
production and fielding decisions for waves rather than
individual releases. This way, decision makers still managed
risks without excessive, time-consuming staffing processes.

Flexible and Disciplined Requirements Management
Program sponsors for the majority of MAIS programs document
their requirements with the Joint Capabilities Integration
Development System “IT Box” model. With the IT Box,
requirements are specified in an Information System Initial
Capability Document (IS ICD) and Information System
Capability Development Document (IS CDD).3 The program
sponsors describe more details of the IS ICD and IS CDD
requirements in Requirements Definition Packages and further
define the capability for each release in Capability Drops.4

One advantage of agile acquisition and the IT Box is the
flexibility to adjust the priority and urgency of requirements.
Program sponsors document requirements at the beginning

of the acquisition program when the software developers
and users know only a rough outline of the program. As the
system matures, users and developers might realize some of
the requirements are not consistent with the best use of the
system’s capabilities. The threats or the doctrine may change,
and in response, the program may need to develop a capability
earlier than originally planned. A software module might
encounter significant challenges that could ultimately influence
the acquisition timeline. In such cases, the IT Box provides
the requirement governance body with the authority to decide
whether to leave that capability for a future release, or to add
resources to complete that capability.

Many MAIS programs implement commercially available
agile framework products. Most agile frameworks state
requirements in terms of user stories, which are a small segment
of functionality that a user wants. The capability to execute a
user story is delivered in a sprint, or a small segment of software.
The user stories are combined into an epic, which is a larger
description of how the user intends to use the system. The
capability to execute the epic is delivered in a release composed
of multiple sprints.

Compared with typical requirements in a system specification
such as “system ABC must be able to perform XXX task within
YY seconds,” epics and user stories provide a more operational
context such as “the user must be able to receive X input and
produce Y product in time to support Z task.”5 The user story not
only provides performance goals for each task, but also provides
operational context of how those tasks work together to produce a
desired outcome.

A user story allows the program sponsor to frame a feature in
terms of its benefits for a particular user. A well-written user
story helps developers design software that delivers specific
benefits. A pitfall a program can easily fall into is breaking epics
into tasks rather than user stories. In those cases, development
and testing processes becomes task-focused (doing things)
instead of delivery-focused (creating value). For a coherent
and consistent understanding of requirements in operationally
relevant terms, it is important to describe requirements in terms
of value to the user rather than tasks; e.g., a user story should be,
“user must update unit location before the next planning update
cycle,” rather than, “user must be able to update the unit location
in less than 4 seconds.” This way, developers and testers can
both understand the importance and operational consequence of
each step.

3	 Manual for the Operation of the Joint Capabilities Integration and
Development System (JCIDS), February 12, 2015, page D-29

4	 Ibid., page D-34 and figure D-4
5	 Defense Acquisition University (https://dap.dau.mil/glossary/Pages/2752.aspx)

defines system specification as “a description of the system-level requirements,
constraints, and interfaces (functional, performance, and design) and the
qualification conditions and procedures for their testing and acceptance. The
System Specification, initially reviewed at the System Requirements Review
(SRR), ultimately becomes part of the functional baseline that is confirmed at
the completion of the System Functional Review (SFR).”

F Y 1 6 D O D P R O G R A M S

MAIS 25

For the Distributed Common Ground System – Army (DCGS-A)
FOT&E, DOT&E evaluated the system primarily based on the
user’s ability to execute “vignettes” – a series of user actions
that accomplishes the mission. For instance, one of the vignettes
required the brigade equipped with DCGS-A to identify a facility
that manufactured IEDs, and locate and designate the facility
to be targeted. The Army program sponsors developed 10 such
vignettes for FOT&E. The program sponsor, in concert with
combat developers and the brigade, further divided the vignettes
into steps for specific DCGS-A users.

Change Management that Starts Early and Continues
Throughout the Process
Military users cannot always adapt to commercial practices. In
such cases, the program office should work closely with the users
to refine business processes. For example, the GCSS – Marine
Corps (GCSS-MC) Program Office spent many months with
system designers and tactical users, exchanging ideas and
designing new business processes that retained the power of new
software while accommodating specific military requirements
such as limited bandwidth on the move, limited ability to carry
heavy hardware, and unit personnel changing over with military
rotations. The process was iterative; approved procedures did not
always work out the way users and engineers expected. In such
cases, users and engineers needed to retune business processes
and software to accommodate the military missions.

After deploying the new software, the GCSS-MC Program
Office fielding team worked extensively with users during the
fielding process so that individual adjustments could be made for
specific users. Similarly, another program, GCSS-J, coordinated
early with the users to describe their workflow in terms of user
stories, and continued dialog with the users after fielding to
make requested changes. Such adjustments can be as simple as
redesigning the look of the display and writing patches to adapt
the software. In some cases, extensive adjustments ended up as a
new function to be delivered in the next available software drop,
pending approval by decision-makers.

Architecture Description in Accordance with the DOD
Architectural Framework
A well-designed and sufficiently detailed architecture is a
prerequisite for effective development and employment of
enterprise software. This is no different than needing a detailed
blueprint for a building before construction and for maintenance.
The more complex a program is, the more the developer and
maintainers need the architecture description. The DOD
architectural framework provides an outline for documenting the
architecture.

Sufficiently detailed workflow information (as provided in
the system view and operational view architectural products)
should be coordinated with users to develop user procedures and
training. Such coordination allows discussion regarding how
the system can be integrated into user’s doctrine and procedures,
or to modify the doctrine, procedures, and user training to take
advantage of the technology.

During the development and sustainment phases, the program
office should update architectural products to ensure consistency

with user procedures and updated interfacing systems. The
updated architecture should also remain consistent with user
stories that describe the updated procedures and interfaces.

Mature Doctrine and Training Development
It is easy to fall into the trap of mistaking the purchase of tools
with providing solution to a problem. In reality, tools do not help
the user unless users know how to use the tools to accomplish
the mission. For DOD systems, successful programs tend to
have doctrine that describes how the system fits into the overall
military operations. The doctrine in turn becomes the basis of
developing TTPs that describes in more detail how the users
should employ the functions the system provides. The doctrine
and TTPs then should be integrated into a training program so
that users have necessary knowledge to operate and maintain the
system.
•	 TTPs. While the program manager should make the transition

to a new MAIS program as seamless as possible, the reality
of automation and optimization can demand change in the
way the military does things. For instance, whereas the old
process may have been to place an order for a part first and
have the financial office check that order against available
funds second, the new software may pre-check the funds
balance as a part of processing the order. To take advantage
of new capabilities, system sponsors and users must develop
and train doctrine and TTPs. GCSS-A incrementally fielded
capability with sufficient time to develop the TTPs so that the
users received systems with clear instructions on how to use
the system to accomplish the mission.

•	 Training. User training for new system capabilities should
include not only how to do an individual task, but also how to
work with the new capabilities as a team. The training must
include sufficient practice sessions to get used to new TTPs
and for each unit to develop its own operating procedures.
The DCGS-A Program Manager dedicated almost a year
to gradually increasing the scope of training, starting with
individual training and culminating in a brigade free-play
training exercise.

Iterative Developmental Tests that Start Early
MAIS programs typically have one prime vendor that integrates
hardware and software components from multiple vendors.
The program office should have a coherent strategy to find and
fix problems as each software component is developed and
delivered, because software engineers can find and fix problems
more quickly before a software module is integrated into a
larger and more complex program. Isolating the root causes of a
problem can be very difficult after the software has been nested
with other vendors’ products. In addition, the prime vendor may
have to redo the integration work after receiving an updated
software module.

Database Interfaces and Commonality
MAIS programs typically ingest data from multiple sources
to produce new database products. If data sources provide
inaccurate data, the resulting product will be inaccurate. The
program may not be able to ingest the data if a data source
provides data in a different format. To minimize such risks, the

F Y 1 6 D O D P R O G R A M S

26 MAIS

LMP Program Management Office (PMO) conducted trading
partner test (TPT) as well as process and data integrations test
(PDIT) events before government developmental test (DT)
and operational test (OT) events. The TPT ensured interfaces
with trading partner systems worked as intended, and the PDIT
ensured that the end-to -end processes worked well. Many
programs do adequate interface tests that are similar to a TPT,
but they neglect to test an entire process as done in the PDIT. An
early test of process and data in a controlled environment makes
it much easier to identify and fix root causes of any discrepancies.
The TPTs and PDITs provided the LMP PMO early opportunities
to discover shortfalls and implement necessary adjustments.

The LMP PMO put management focus on data integration.
Conducting PDITs before DT and OT events helped ensure LMP
was ready to ingest and use accurate data from the data sources.
The PDITs helped LMP avoid one of the most common causes
for logistics system failures: nomenclature inconsistencies. For
instance, when a user needs to know how many M1A1 tanks
are in the unit’s inventory, the database should be capable of
counting all M1A1s. Unfortunately, one database may call it
M1A1; another database may call it Abrams Tank; and another
database may call it “tank, main battle, armored.” Even worse,
some databases may track the data at the component level (such
as engine, transmission, or gun mounts) rather than the platform
level such as M1A1. Given the variety of source databases, the
LMP database manager had to first correlate all of these terms
with a common term before the system could return an accurate
count for the query. Even when the database manager succeeds
in this difficult task, if the database manager is not careful, a
query for “Abrams tank” may count all of the M1A2s as well
as M1A1s. If the intent was to count M1A1s, the count would
be wrong. The database manager must find a way to work
with all of the existing databases and either build interfaces or
modify databases. LMP managed this challenge by conducting
well‑designed, two way data integration tests to identify and fix
the interface issues.

DCGS-A is an intelligence system that exploits intelligence,
surveillance, and reconnaissance data to produce actionable
intelligence. The system accomplishes this through an
intelligence fusion process that combines information from a
large number of sources. The fused intelligence can only be
as good as the accuracy of the data it uses. The Army quickly
found that synchronizing databases is a daunting challenge and
created the Tactical Entity Database (TED) that combines and
organizes data from hundreds of sources into specific entities.
An entity may be a person, building, organization, or equipment.
By organizing large and disparate information into a coherent
database, information can be correlated and associated so that
an analyst can get a clear picture of what is in the unit’s area of
responsibility.

Even after the creation of TED, DCGS-A had more database
challenges to overcome. In unconventional warfare, the
database has to record many items that do not have standard
nomenclatures, or item names. An example is a brand new type
of IED. For some purposes, such as route planning, the unit

would find it more useful to group all such devices as IEDs.
For other intelligence purposes, the unit may need to identify
specific types of IED, and must create a new item description to
document that type of IED. The new nomenclature needs to be
designed so that DCGS-A can still recognize it as an IED when a
user queries for total number of IEDs. In addition, the creator of
the new nomenclature must ensure all other DCGS-A users are
aware of such item description. The Army conducted extensive
unit-level training to define and teach when to create new
nomenclature, how to create the nomenclature, and how to share
the new nomenclature with other users.

DCGS-A followed the intelligence fusion process that begins
with the fusion level 0, or “Normalization,” step. Normalization
is the process where DCGS-A users enter data from multiple
sources into TED. If a soldier reported seeing a truck with a
machine gun mounted in the back, the data entry person would
first look to see if such an item is on the pull-down menu. If not,
the data entry person must decide whether to create a new item
or call it the most similar item such as armored personnel carrier
with machine gun. This step determines the value and accuracy
of all processes that follow.

DOT&E evaluated DCGS-A to be not operationally effective
after the IOT&E in 2012, but evaluated the system to be
operationally effective after the FOT&E in 2015. Many factors
contributed to the difference, but one of the most significant
improvements was TED. A major contributing factor was that the
Army conducted a series of extensive training events, including
unit-level training, so that the unit was able to develop and train
with detailed procedures and processes.

Database accuracy and currency cannot rely on software
solutions alone. Proper data integration and interfaces tend to be
the most accurate predictors of program success for networked
MAIS systems. Accordingly, program managers should first
identify and document all database and interface requirements
in architectural products, monitor progress via interface and
data integration tests, and implement procedures and training
programs to ensure users maintain the databases properly.

A Robust Developmental Test with Operationally Representative
Interfaces and Networks
Automated developmental testing is critical to gain efficiency and
accuracy. Automated acceptance and regression tests provide an
efficient and reliable option to verify that a code change works
as intended without breaking anything. However, program
offices must avoid using automated testing as a replacement for
a comprehensive DT. Automated testing is a prerequisite step to
make sure coding is done correctly; it is not a validation of the
software’s ability to support the user’s mission.

Many complex MAIS programs perform well in DT and fail to
perform in OT. Two contributing factors cover the majority of
the difficulties seen during OT:
•	 Network connectivity and congestion. Most DT labs use a

hardwired network with unlimited bandwidth, but during OT
the system uses a tactical network with limited bandwidth.
The limitations can cause the network to time-out, resulting

F Y 1 6 D O D P R O G R A M S

MAIS 27

in a system failure. DT labs should emulate the expected
operational networks as accurately as possible and simulate
tactical network bandwidth, connectivity, and congestion.

•	 Interfacing systems. Each of the interfacing systems may
have peculiarities which are not well understood during
DT. Operational interfaces may have software patches to
compensate for problems experienced during operation
and thus work differently from the initial design. These
differences might be enough to cause the system under test
to fail to support the user’s mission. DT labs should have the
latest versions of the key interfacing systems and use as much
operationally realistic data as possible.

Persistent Maintenance of the Cybersecurity Plan of Actions
and Milestones
An enterprise network requires MAIS programs to interface
with multiple outside programs, which often include commercial
systems. Allowing such connections is inherently risky from
a cybersecurity perspective, and often makes it impossible to
eliminate all vulnerabilities. Thus, it is important to identify,
document, and continue to monitor those risks. A cybersecurity
Plan of Actions and Milestones (POA&M) is the best tool to
identify and document cybersecurity vulnerabilities and the
mitigations for them. The POA&M should clearly identify
all of the vulnerabilities by priority and urgency, the proposed
corrective actions, responsible organization and person, and the
milestone to achieve correction. It should include vulnerabilities
associated with interfacing systems, and should not be a
document that is approved once and put away; the threats are
dynamic, as are the network environments.

Continual awareness of emerging cybersecurity threats, realistic
adversarial testing of the system against those threats, and
implementing mitigations for vulnerabilities should be an
ongoing process supported by decision-makers with the authority
to require corrective actions. With appropriate leadership’s focus,
MAIS programs with extensive cybersecurity vulnerabilities
have successfully resolved them. For example, the Navy’s
Consolidated Afloat Networks and Enterprise Services (CANES)
program had hundreds of significant cybersecurity vulnerabilities
as it entered into IOT&E, but successfully tracked and fixed
a sufficient number of them to be more secure against cyber-
attacks. The CANES program will have to continue to maintain
its POA&M to discover and fix cybersecurity vulnerabilities as
the threats and the network continue to evolve.

Thorough Tracking of Software Problems in a Comprehensive
Database and Senior-Level Review of Priorities
Agile development requires decision-makers to quickly modify
the priority and urgency of functions from one release to another.
For the decision-makers to make an informed decision on a short
decision cycle, they need to understand the development status
and challenges. Even within the release cycle, decision-makers
may have to change the amount of resources devoted to a
particular function. Therefore, the decision-makers need to know
the number of open software problems by criticality and urgency,
as well as the time and resources needed to resolve software
deficiencies. If correcting a problem requires a long time and

interferes with the fielding schedule, decision-makers should
consider mission impact against the time and resources required
to fix problems. This will help to decide whether to defer the
delivery to the next release or rearrange resources to more
quickly solve the problem. Both GCSS-A and LMP have good
processes for senior-level Army leaders to review and prioritize
fixes to software problems based on user input.

Implementing Best Practices through Agile Acquisition
The best practices identified in this report can help to improve
the success of MAIS programs and should be applied broadly.
In order to maximize the effectiveness of these practices, DOD
should pursue the agile acquisition approach. Incremental
software delivery is one aspect of agile acquisition and has
already been implemented with some success. However, DOD
can do more to accommodate agile software development.
Using proven commercial agile frameworks is a good way to
systematically integrate the best practices.

Incremental Software Delivery and Agile Acquisition
To overcome challenges associated with program complexity and
requirements instability, DODI 5000.02 includes an acquisition
model suitable for incremental software delivery.6 Compared
to a traditional “waterfall” model, where all of the functions
are developed and delivered in one lengthy and monolithic
acquisition cycle, incremental delivery allows each increment to
focus on a selected set of functions, which reduces complexity.
In addition, each increment takes a shorter time, and thus reduces
the chance of requirement changes.

In a 2015 report, the GAO claimed:

About half of the [selected 20 MAIS] programs that met or
planned to meet this condition had been positioned to do so
because they had been restructured and split into smaller,
incremental programs, which is consistent with a Defense
Science Board recommendation, Office of Management
and Budget (OMB) guidance, and a statutory requirement
to use incremental contracting to the maximum extent
practicable for major IT acquisitions.7

However, working on multiple software releases, which often
overlap, brings its own set of challenges – including difficult
coordination among the key stakeholders and increases in
redundancies and resource requirements. To help overcome these
challenges, many MAIS programs adopted agile acquisition.

Agile acquisition (also known as agile software development) is
an approach to software development that is built around a set of
guiding principles established by the nonprofit Agile Alliance.
This approach’s practices and methods are in large part intended
to improve efficiency, responsiveness to changing needs, and
quality. Essential elements of agile acquisition include:
•	 Delivering working software quickly and improving/adapting

it incrementally in frequent releases

6	 DODI 5000.02, page 11, paragraph 5c(3)(d)
7	 GAO report GAO-15-282, “Defense Major Automated Information

Systems: Cost and Schedule Commitments Need to Be Established Earlier,”
February 26, 2015, page 15

F Y 1 6 D O D P R O G R A M S

28 MAIS

•	 Collaborating directly with users
•	 Minimizing governance processes

Agile acquisition is only appropriate after the basic infrastructure
is in place. While agile acquisition gives flexibility for adding
or enhancing functions and applications, building a network
infrastructure requires a deliberate and logically sequenced plan.
For most DOD MAIS programs, network infrastructure is so
complex and interrelated that there is not much flexibility, and
this lack of flexibility nullifies the benefit of agile acquisition. A
large system may have an infrastructure software component that
is necessary for verification testing of other system components.8
A program should have a working infrastructure that satisfies
the Information Exchange Requirements and network protocol
requirements, and have a sufficiently detailed architectural
description to ensure each software module fits into the overall
enterprise.

Additionally, a MITRE report advises:9

… it is absolutely critical that the development of the
architecture precede sprint development.10 Alternatively,
a program can initially use a traditional approach to build
the initial increment that meets the baseline architecture
requirements. Once the program has established the
baseline and framed the overall conceptual design,
program managers can consider shifting to an agile
approach for subsequent increments that build additional
functionality into the operational baseline.

For instance, DCGS-A and DCGS-Navy first delivered stable
infrastructure with Increment 1, and are now moving to agile
acquisition for Increment 2. In both cases, the first phases of
Increment 2 improve data infrastructure before adding newer
applications.

Implementing a Proven Agile Framework Product
Most successful commercial software developers use proven
agile software development framework packages. Popular

agile development framework products include Scrum, Extreme
Programming, and Scaled Agile Framework (SAFe). These
products systematically incorporate the best practices discussed
in this section, and make it easy for MAIS programs to
implement good ideas from both government and commercial
developers. Scrum and SAFe are the approaches most often
implemented by MAIS program managers.

The agile acquisition frameworks share common attributes:
an integrated team approach that integrates users, developers,
and testers; flexible management of requirements priority and
urgency; small segments developed and tested before combining
into larger segments; and many concurrent activities.

While the commercially available agile frameworks help build
good acquisition structure, leaning how to use the frameworks is
not easy. The program office needs to plan sufficient resources
to train acquisition stakeholders. Air Force DCGS is starting
to implement SAFe for its Open Architecture development and
has heavily invested time and resources to train not only the
program office, but everyone in the acquisition community – such
as requirement owners, testers, and program sponsors. Such
training is essential for the team approach; it is impossible to
collaborate until everyone shares a common language and frame
of reference.

8	 Carnegie Mellon University, Software Engineering Institute report,
“Considerations for Using Agile in DoD Acquisition,” 2010

9	 The MITRE Corporation technical paper, “Defense Agile Acquisition Guide:
Tailoring DoD IT Acquisition Program Structures and Processes to Rapidly
Deliver Capabilities,” March 2014

10	 A “sprint” is a regular, repeatable work cycle in agile methodology during
which work is completed and made ready for review.

