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Software Algorithm Testing – Examples 

Software algorithms used for processing large amounts of data need to be 
efficient, incorporating industry best practices.  This is especially important for fast 
searching, sorting, and merging of data files.  The primary goal in looking at software 
algorithm performance during developmental testing is to ensure that industry best 
practices have been employed to ensure operational mission threads involving large data 
sets operate efficiently.  Algorithm testing can also be used to compare the performance 
of proposed COTS solutions to aid in choosing the one that provides the best mix of 
capability and processing efficiencies.  Significant insights can be learned from focused 
testing in a DT controlled environment, even though the tester may not have direct access 
to the data structures or software code.  These insights should be sufficient to determine 
whether the developer has used industry best practices when writing data structures and 
algorithms.  Because this type of testing does not focus on trying to manifest and detect 
software bugs, the process will be explained in more detail in this example.  However, 
TEMP language can be very simple to insert. 

Example TEMP language 

Example 1 (generic): Algorithm performance testing will be executed during DT 
for those parts of mission thread execution involving the manipulation of large data sets 
supporting a major theater war level of scenario, where the response time may be 
excessive to the point of potential mission impact. 

Example 2 (AOC-WS): Algorithm performance testing will be performed during 
DT for the Target List Merge Process that is used to create the Joint Integrated Prioritized 
Target List (JIPTL). 

Example 3 (AOC-WS): Algorithm performance testing will be performed during 
DT for the auto-planning process used to determine aircraft routes to deliver weapons to 
multiple targets. 

Types of algorithms that may need performance testing 

There are several types of algorithms that may need performance testing to try to 
ascertain whether the developer used industry best practices.  Each of these categories of 
work needing to be performed can be categorized based on roughly how much longer the 
processing should take as the data set increases in size. 

 Searching one or more large data sets to find data elements matching certain 
criteria, to include creation and execution of complex ad hoc data queries 

 Sorting a large data set into a particular sorted order 
 Merging two or more data sets, at least one of which is large, with resultant list 

possibly in some sorted order 
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 Optimization algorithms which seek to determine optimal routing of a delivery 
vehicle to visit multiple locations (for example, a optimizing a bomber route as it 
flies over or near multiple targets) 

Industry best practices 

The subject of combinatorial algorithms deals with the problems associated with 
performing fast computations on discrete data structures.  More information on this can 
be obtained through university-level course work on data structures and combinatorial 
algorithms.  Many types of algorithms can also be found through simple internet 
searches, and Wikipedia will show the name of the algorithm and best case, average case, 
worst case, memory usage, and whether the algorithm is stable. 
http://en.wikipedia.org/wiki/Sorting_algorithm shows information for various sorting 
algorithms.  Unless significant information is known about the data sets, industry best 
practices should generally use algorithms based on good average performance.   

In this example, big O notation is used to classify algorithms by how they respond 
(e.g., in their processing time or working space requirements) to changes in input size 
(e.g. the number of data elements in a large data file). Big O notation characterizes 
functions such as the processing time according to their growth rates, usually providing 
an upper bound on the growth rate of the function.  See 
http://en.wikipedia.org/wiki/Big_O_notation. 

Performance is usually expressed in terms of the size of the data set.  For 
example, if n represents the number of elements in a large data set, then the average 
performance of an algorithm operating on the elements of the data set would be expressed 
as being O(n ln n) or O(n2). 

Algorithm performance testing – sorting example 

When examining software data structures and algorithms in a black box 
environment, the goal is merely to determine whether the data structures and algorithms 
likely used in the software application belongs to a class exhibiting O(n ln n) or O(n2) 
average type behavior, for example.   

Suppose the software function being tested is an algorithm that sorts a large data 
file into a particular sorted order.  Good average performance for a sorting algorithm is 
O(n ln n), whereas bad average performance would be O(n2).  Several industry standard 
sorting algorithms that exhibit “good” performance are Quick sort, Heap sort, and Merge 
sort.  Sorting algorithms that do not exhibit good average performance would include 
Bubble sort, Insertion sort, and Selection sort, all of which exhibit O(n2) average 
performance.  Figure 1 illustrates the rate of growth, in time, based on O(n ln n) or O(n2) 
type performance, as the size of the data file increases. 
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Figure 1. Performance Growth 

In Figure 1, the bottom curve, expressed as “a*n + K”, represents linear, or O(n) 
growth in time.  The middle curve, expressed as “b*n ln n + a*n + K” represents O(n ln 
n) growth in time.  The upper curve, expressed as “c*n2 + b*n ln n + a*n + K” represents 
O(n2) growth.  This figure only serves to illustrate graphically how much faster an O(n2) 
curve rises, compared to an O(n ln n) curve.  Thus, a sorting algorithm that exhibits 
O(n2) growth would become excessively slow as the file size increases. 

Suppose during early DT testing, a process that sorts a list seems to take a 
relatively long time, to the point where the ability to accomplish a mission thread in a 
timely manner may be questionable.  During early testing, the goal is not to determine 
whether the developer may have used Quick sort or Heap sort.  Rather, it is simply to 
determine if the performance appears to be O(n ln n) or O(n2), and whether more 
extensive testing or structured code walkthroughs may be required.  For the example 
problem of sorting a large data set, four or five test runs sorting significantly different 
sized data sets could be completed with the response time plotted on the Y axis, against 
the data set size on the X axis.  If the plotted data appears to be O(n ln n), additional 
testing of this kind may not be warranted.  If the data suggests that the response time rises 
as O(n2), then more thorough performance testing would be warranted, as well as a 
review of coding methods by individuals specifically trained in analysis of algorithms. 

To perform more thorough performance testing, it is recommended that it be 
performed in a carefully controlled DT environment where “noise” contributions, such as 
resource contention from other sources, can be eliminated.  One could start by 
establishing a data set of size n in a pseudo-random sorted order.    This list could then be 
sorted, with the response time being recorded.  This same list could be placed into a 
different pseudo-random sorted order, and then sorted again, with the time recorded.  
This process would be repeated several times, allowing one to compute the mean 
response time for sorting the lists of size n.  Even though the distribution of response 
times is not likely to be normally distributed, we use mean (instead of median) response 
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time since we are checking for the average performance characteristics of the algorithm 
used.  Then, a similar process is followed for obtaining mean response times for sorting 
lists of size 2n, 3n, and 4n.  The four mean response times for sorting lists of size n, 2n, 
3n, and 4n would be used to solve a system of 4 equations, 4 unknowns for an equation 
of form  

Response Curve = cX2 + bX ln X + aX + K  

For the simple sorting of one large dataset example, the worst case behavior 
expected would be O(n2), so only coefficients “c”, “b”, “a”, and “K” would be needed.   
If the estimated value for “c” is very near zero, then the algorithm is likely to be “good”, 
since it would be exhibiting O(n ln n) performance.  Conversely, if the estimated value 
for “c” is significantly greater than zero, then the sorting algorithm probably exhibits 
O(n2) average behavior and is not “good” by industry best practices. “Bad” algorithms 
should be replaced with “good” algorithms early in development so that when the 
algorithms are used on large data sets during OT, significant performance degradation is 
not a problem.   

Note we can also plot the worst case response times for sorting lists of size 2n, 
3n, and 4n, and this may give additional insight into the worst case performance of the 
sorting algorithm used. 

Algorithm performance testing – file merging example 

Suppose the task is to merge two data files containing m and n records, 
respectively, and that duplicates must be removed.  Suppose also that each list is sorted in 
some priority order, but not on a unique key field for each record.  The merged list needs 
to be sorted in this same priority order.   

For this type of problem, a “bad” algorithm would perform, on average, in O(mn) 
or possibly in O((m)(m+n)).  It might not change the sorted order of either list, and 
instead would consider each element from the second list and walk through all elements 
of the first list to ensure no duplicates, and it would be inserted into the first list.  This 
process would continue until all n records from the second list had been correctly 
processed into the first list, eliminating duplicates. 

 A “good” algorithm would perform in O((m+n) ln (m+n)), which is significantly 
better as m and n become large.  Each list could be sorted in order by unique key, 
assuming the use of a good sorting algorithm.  This would require, on average, O(m ln m) 
to sort the first list, and O(n ln n) to sort the second list.  Then, it becomes very easy to 
make one linear pass through each list, inserting and removing duplicates, and this 
requires O(m+n) time.  Finally, the merged list could be resorted into the desired priority 
order, requiring on average O((m+n) ln (m+n)), again assuming the use of a good sorting 
algorithm. 

Similar to the approach for sorting a large data set, four or five test runs merging 
significantly different sized data sets could be completed with the response time plotted 
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on the Y axis, against the data set sizes (m+n) on the X axis.  If the plotted data appears 
to be O((m+n) ln (m+n)), additional testing of this kind may not be warranted.  If the data 
suggests that the response time rises as O(mn) or worse, then more thorough performance 
testing, similar to that discussed for the sorting algorithm, would be warranted. 

If the problem were merging three large data sets of size m, n, and p, testing 
would consider O((m+n+p) ln (m+n+p)) type average behavior as good, with average 
performance worse than that being bad. 

Algorithm performance in requirements or for product selection 

For COTS solutions for which code development is desired to be minimized, 
algorithm performance can be used as one further attribute for product selection.  
Performance considerations could include algorithm characteristics such as best case, 
average case, worst case, memory usage, and stability. 


