Common Test Designs

Design Type	Description and Applicability for Operational Testing
Full Factorial (2- level)	A design with two or more factors, each with two levels, where all possible factor combinations are tested at least once.
	Typically used in when the total number of factors and factor combinations is not too large (e.g., 3-5 factors).
	A full factorial design allows for the estimation of all main effects and interaction terms in the model.
	Full factorial designs tend to provide too much information (over powered) for large numbers of factors.
Fractional Factorial Design	A fractional factorial design consists of a strategically selected subset of runs from a full factorial design
	Useful when:
	Large number of factors and it is uneconomical to test every possible factor combination
	In screening experiments to identify the primary factors
	Typically, fractional factorial designs that allow for two-way interactions are adequate to characterize system performance
	Leverages sparsity of effects: most systems are dominated by some of the main effects and low order interactions
Full Factorial Design with center points	Center points add the ability to check for curvature across continuous factors
	Provide small increases to statistical power
Full Factorial (2- level) replicated	Replication can be used to increase statistical power and provide estimates of variation within a condition
	Often not possible in cost constrained operational tests
	In a constrained resource environment it is better to cover more of the operational space than to replicate (i.e., do not eliminate a factor for the sake of replication)
	A common middle ground is to only replicate a subset of the design (e.g., a center point)
General Factorial	Similar to a two-level factorial design a general factorial design has two or more factors, each with two or more levels, where all possible factor combinations are tested at least once.
	Only possible when the number of factors is not too large (e.g., 3-5 factors).
	Allows for the estimation of all main effects and interaction terms in the model.
	Less powerful as you add more levels to each factor
	For continuous factors, two-levels provides the highest power

Common Test Designs

Response Surface Designs	Response Surface Methodology is a collection of experimental designs
	Originally invented by the chemical industry to conduct sequential experimentation for process optimization
	Evolved to be a broad class of designs that characterize system performance
	Robust test design methodology fits second order models including quadratic effects for flexible performance characterization
	Types of Response Surface Designs: Central Composite Design, Face Centered Cube Design, Small Central Composite Design, Box-Behnken Designs, Optimal Designs
Optimal Design	Optimize the test points for a known analysis model and sample size
	Optimal designs are useful:
	Large number of factors
	Highly constrained design region (disallowed combinations of factors)
	Large number of categorical factors
	The optimal design fallacy
	Designs that are optimal under one criteria might be far from optimal under another criteria
	Optimal designs are similar to factorial designs and response surface designs for similar analysis models
	Always build in extra points to optimal designs to allow for incorrect model assumptions and statistical power
Combinatorial Designs	Highly efficient test designs that are commonly used in testing software
	Do not support cause-and-effect analysis like all of the above design types, rather they cover the space very efficiently to look for problems.
	Root-cause analysis must be conducted if problems are found