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FOREWORD 

 

1. This handbook is approved for use by all Departments and Agencies of the Department of 

Defense (DoD).  

 

2.  Reliability growth management procedures have been developed to improve the reliability of 

DoD weapon systems.  Reliability growth techniques enable acquisition personnel to plan, 

evaluate and control the reliability of a system during its development stage.  The reliability 

growth concepts and methodologies presented in this handbook have evolved over the last few 

decades by actual applications to Army, Navy and Air Force systems.  Through these 

applications, reliability growth management technology has been developed to the point where 

considerable payoffs in system reliability improvement and cost reduction can be achieved.  

 

3.  This handbook provides procuring activities and development contractors with an 

understanding of the concepts and principles of reliability growth, advantages of managing 

reliability growth, and guidelines and procedures to be used in managing reliability growth.  It 

should be noted that this handbook is not intended to serve as a reliability growth plan to be 

applied to a program without any tailoring.  This handbook, when used in conjunction with 

knowledge of the system and its development program, will allow the development of a 

reliability growth management plan that will aid in developing a final system that meets its 

reliability requirements and lowers the life cycle cost of the fielded systems.  

 

4.  Because of the brevity of the handbook, detailed development of underlying theory and 

estimation procedures are not provided.  More extensive details may be found in the literature 

cited.   

 

5.  Comments, suggestions, or questions on this document should be addressed to the U.S. Army 

Materiel System Analysis Activity (AMSAA), ATTN: RDAM-LR ,  

392 Hopkins Road Aberdeen Proving Ground MD, 21005-5071, or emailed to 

amsaa.reltools@us.army.mil. Since contact information can change, you should verify the 

currency of the information above using ASSIST Online database at is 

https://assist.daps.dla.mil/online/.

https://assist.daps.dla.mil/online/
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1. SCOPE. 

 

1.1 Purpose.  

This guide provides an understanding of the concepts and principles of reliability growth. 

Guidelines and procedures to be used in managing reliability growth are also presented.  This 

guide is not intended to serve as a reliability growth plan to be applied to a program without any 

tailoring.  When used in conjunction with knowledge of the system and its acquisition program, 

it will allow for the development of a reliability growth management plan that results in a final 

system that meets its requirements and lowers the life cycle costs of the fielded system.  

 

1.2 Application.   
This guide is intended for use on systems/equipment during the development phase by both 

producer and consumer personnel.  

 

2. APPLICABLE DOCUMENTS. 

 

2.1 General.   

The documents listed below are not necessarily all of the documents referenced herein, but are 

those needed to understand the information provided by this handbook.   

 

2.2 Government Documents.  

The following Government documents, drawings, and publications form a part of this document 

to the extent specified herein.  Unless otherwise specified, the issues of these documents are 

those cited in the solicitation or contract.  

 

    DOD Guide for Achieving Reliability, Availability, and 

Maintainability, August 3, 2005.  

 

2.3 Non-Government publications.   

The following documents form a part of this document to the extent specified herein.   

 

 GEIA-STD-0009, ―Reliability Program Standard for Systems Design, Development, and 

Manufacturing,‖ August 01, 2008.   

 

 IEEE Std 1332-1998, "IEEE standard reliability program for the development and 

production of electronic systems and equipment," 1998. 
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3. DEFINITIONS.  

 

3.1 Reliability.   

Reliability is the probability that an item will perform its intended function for a specified period 

of time under the conditions stated in the Operational Mode Summary/Mission Profile 

(OMS/MP).  

 

3.2 Operational Mode Summary/Mission Profile.   
An OMS/MP projects the anticipated mix of ways a system will be used for each moment of 

time to include both peacetime and wartime. It also includes the percentage of time the system 

will be exposed to each type of environmental condition and movement terrain. 

 

3.3 Reliability Growth.   
Reliability growth is the positive improvement in a reliability parameter over a period of time 

due to implementation of corrective actions to system design, operation or maintenance 

procedures, or the associated manufacturing process. 

 

3.4 Reliability Growth Management.  
Reliability growth management is the management process associated with planning for 

reliability achievement as a function of time and other resources, and controlling the ongoing 

rate of achievement by reallocation of resources based on comparisons between planned and 

assessed reliability values. 

 

3.5 Repair.    
A repair is the refurbishment of a failed part or replacement of a failed part with an identical unit 

in order to restore the system to be fully mission capable. 

 

3.5.1 Fix.   
A fix is a corrective action that results in a change to the design, operation and maintenance 

procedures, or to the manufacturing process of the item for the purpose of improving its 

reliability.  

 

3.5.2 Failure Mode.   
A failure mode is the failure mechanism associated with a potential or observed failure.   Failures 

due to an individual failure mode may exhibit a given failure rate until a corrective action 

(termed a fix) is made in the design, operation, maintenance, or manufacturing process that 

mitigates the failure mechanism. 

 

3.5.2.1 A-mode.   
An A-mode is a failure mode that will not be addressed via corrective action. 

 

3.5.2.2 B-mode.   
A B-mode is a failure mode that will be addressed via corrective action.  One caution is that a B-

mode failure corrective action developed and implemented during the test program may not be 

fully compliant with the planned production model.  Such corrective actions are typically 
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referred to as interim, short-term or non-tactical fixes.  While such fixes may appear to improve 

the reliability in test, the final production (i.e. long-term or tactical) fix would need to be tested 

to assure adequacy of the corrective action. 

 

3.6 Fix Effectiveness Factor (FEF).   
A FEF is a fraction representing the reduction in an individual initial mode failure rate due to 

implementation of a corrective action. 

 

3.7 Growth Potential (GP).   
The GP is a theoretical upper limit on reliability which corresponds to the reliability that would 

result if all B-modes were surfaced and fixed with the realized failure mode FEF values. 

 

3.8 Management Strategy (MS).   
MS is the fraction of the initial system failure intensity (rate of occurrence of failures) due to 

failure modes that would receive corrective action if surfaced during the developmental test 

program. 

 

3.9 Growth Rate.  
A growth rate is the negative of the slope of the graph of the cumulative failure rate versus the 

cumulative test duration for an individual system plotted on log-log scale.  This quantity is a 

metric that reflects the rate at which the system’s reliability is improving as a result of 

implementation of corrective actions.  A growth rate between (0,1) implies improvement in 

reliability, a growth rate of 0 implies no growth, and a growth rate less than 0 implies reliability 

decay.  This concept of growth rate only pertains to growth models that assume a linear 

relationship between the expected cumulative failure rate and the cumulative test duration when 

plotted on a log-log scale.  

 

3.10 Poisson Process.   
A Poisson process is a counting process for the number of events, N(t), that occur during the 

interval [0,t] where t  is a measure of time. The counting process is required to have the 

following properties: (1) the number of events in non-overlapping intervals are stochastically 

independent; (2) the probability that exactly one event occurs in the interval [ , ]t t t  equals 

 t t o t     where t is a positive constant, which may depend on t , and  o t denotes an 

expression of ∆t > 0  that becomes negligible in size compared to t  as t approaches zero; and 

(3) the probability that more than one event occurs in an interval of length t  equals ( )o t . The 

above three properties can be shown to imply that N(t) has a Poisson distribution with mean 

equal to
0

t

sds , provided s  is an integrable function of s . 

 

3.10.1 Homogeneous Poisson Process (HPP).   
A HPP is a Poisson process such that the rate of occurrence of events is a constant with respect 

to time t. 

 

3.10.2 Non-Homogeneous Poisson Process (NHPP).   
A NHPP is a Poisson process with a non-constant recurrence rate with respect to time t. 
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3.11 Idealized Growth Curve.  
 An Idealized Growth Curve is a planned growth curve that consists of a single smooth curve 

portraying the expected overall reliability growth pattern across test phases.  

 

3.12 Planned Growth Curve.   
A Planned Growth Curve is a plot of the anticipated system reliability versus test duration during 

the development program.  The Planned Growth Curve is constructed on a phase-by-phase basis 

and as such, may consist of more than one growth curve.  

 

3.13 Reliability Growth Tracking Curve.   
A reliability growth tracking curve is a plot of a statistical representation of system reliability 

consistent with the test data used to portray demonstrated reliability versus test duration.   

 

3.14 Reliability Growth Projection.  
Reliability growth projection is an assessment of reliability that can be anticipated at some future 

point in the development program.   The rate of improvement in reliability is determined by (1) 

the on-going rate at which new failure modes are surfaced, (2) the effectiveness and timeliness of 

the corrective actions, and (3) the set of failure modes that are addressed by corrective actions.    

 

3.15 Exit Criterion (Milestone Threshold).   
An Exit Criterion is the reliability value that needs to be exceeded in order to enter the next test 

phase. Threshold values are computed at particular points in time, referred to as milestones or 

major decision points, which may be specified in terms of cumulative hours, miles, etc.  

Specifically, a threshold value is a reliability value that corresponds to a particular percentile 

point of an order distribution of reliability values.  A reliability point estimate based on test 

failure data that falls at or below a threshold value (in the rejection region) indicates that the 

achieved reliability is statistically not in conformance with the idealized growth curve. 

 

3.16 Notations.   

Symbols used in formulas within this document include the following: 

3.17  

 k – total number of potential B-modes 

 m – number of surfaced B-modes 

 T – total duration of a developmental test 

 N(t) – number of failures by time t  

 ρ(t) – expected failure intensity by time t 

 t1 – length of the initial test phase 

M1 – average initial MTBF over initial test phase 

MG– goal MTBF 

 α
 
– growth rate 

 φi – average failure rate for test phase i  

 MS – management strategy 

 μ
d 

– average fix effectiveness  

 M(t) – number of B-modes surfaced by time t 
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 μ(t) – expected value of M(t)
      μk(t) – μ(t) based on assumption of k initial B-modes

 
 ΛU(t) - system failure intensity for unsurfaced modes 

 Λ(t) - system failure intensity, after mode mitigation  

 N
i 
– number of failures for failure mode i  

 N – the total number of failures (for all modes)  

 λ – initial system failure intensity 

 λi– true but unknown initial failure rate for mode i 

     ᶺ 

λi - standard estimate of λi 

  ~ 

      λi - the Stein estimate of λi  

 θ
S 

- true but unknown Stein shrinkage factor 

 h(t) - expected rate of occurrence of new B-modes at time t 

 hk(t) - h(t) based on assumption of k initial B-modes 

 di - true but unknown fix effectiveness for mode i 

ρk(t) - approximation of ρ(t) 

                    MTBF(t) - MTBF at time t 

                    MTBFk(t) - MTBF(t) based on assumption of k initial B-modes 

 

 

 

4.  INTRODUCTION. 

  

This handbook provides an abbreviated synopsis on methodology and concepts to assist in 

reliability growth planning and a structured approach for reliability growth assessments. 

 

4.1 Why.    
Reliability growth management procedures were developed to help guide the materiel acquisition 

process for new military systems.  Generally, these systems require new technologies and 

represent a challenge to the state of the art.  Striving to meet these requirements represents a 

significant portion of the entire acquisition process and, as a result, the setting of priorities and 

the allocation and reallocation of resources such as funds, manpower and time are often 

formidable management tasks. 

 

4.2 What.    
Reliability growth management procedures are useful for determining priorities and allocating 

resources.  These techniques will enable the manager to plan, evaluate and control the reliability 

of a system during its development stage.  The reliability growth concepts and methodologies 

presented in this guide have evolved through actual applications to Army, Navy and Air Force 

systems.   

 

4.3 Layout.   
This guide is written as an overview for both the manager and the analyst.  The fundamental 

concepts are covered in section 1, with only the bare essential details regarding the 

implementation of these concepts discussed in sections 2 and 3.   
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4.4 Reliability Growth Planning.    
Reliability growth planning addresses program schedules, amount of testing, resources available, 

and the realism of the test program in achieving the requirements.  The planning is quantified 

and reflected in the construction of a reliability growth planning curve and the necessary 

supporting reliability activities.  This curve establishes interim reliability goals throughout the 

program. 

 

4.5 Reliability Growth Assessment.    
To achieve reliability goals, it is essential that periodic assessments of reliability be made during 

the test program (usually at the end of a test phase) and compared to the planned reliability 

growth values. 

 

4.6 Managing Reliability Growth. 

 

4.6.1 Commitment and Involvement.    
The essence of reliability growth management is commitment and involvement in all aspects of 

planning, evaluating, and controlling the reliability growth effort.  Management controls the 

resources, and therefore directly affects the reliability growth effort.  Of significant importance is 

the need for management to adequately resource reliability improvement up-front.   

 

4.6.2 Controlling Reliability Growth.    
Assessments provide visibility of achievements and focus on deficiencies while there is still time 

to affect the system design.  By making appropriate decisions with regard to the timely 

incorporation of effective fixes into the system, commensurate with attaining the milestones and 

requirements, management can control the growth process. 

 

4.6.3 Management's Role.    
The various techniques associated with reliability growth management do not, in themselves, 

manage.  The planned growth curve and milestones are only targets.  Reliability will grow to 

these values only with the incorporation of an adequate number of effective fixes into the system.  

This requires dedicated management attention to reliability growth. In addition to how 

appropriately the system is tested, there are at least four planning elements under management 

control, including: 

a) Management Strategy, MS, or the fraction of system initial failure rate addressed by 

corrective actions;     

b) Rate at which failure modes are surfaced; 

c) Turnaround time for analyzing and implementing corrective actions; and 

d) Fix Effectiveness Factor, FEF, or the fraction reduction in the rate of occurrence of 

modes after corrective action. 

 

High level management of reliability growth decisions in the following areas may be necessary 

in order to ensure that reliability goals are achieved: 

a) Revise the program schedule; 

b) Increase testing; 

c) Fund additional development efforts; 



                                                            MIL-HDBK-189C  

7 

 

d) Add or reallocate program resources; and 

e) Stop the program until interim reliability goals have been demonstrated. 

 

4.7 Basic Reliability Activities.   
Reliability growth management is part of the system engineering process, but does not take the 

place of the other basic reliability program management structure and activities, such as: 

 Reliability Engineering 

 Apportionment 

 Failure Modes and Effects and Criticality Analysis (FMECA) 

 Stress analysis 

 Laboratory component level testing 

 Highly Accelerated Life Testing (HALT) 

 Highly Accelerated Stress Testing (HASS) 

 Environmental Stress Screening (ESS) 

 Physics of Failure (PoF) 

 Critical Items List/Analysis 

 Software reliability assessment 

 Failure Reporting and Corrective Action System (FRACAS) 

 Fault Tree Analysis (FTA) 

 Data collection and test monitoring 

 Scoring and Assessment of RAM data 

 

4.8 Benefits of Reliability Growth Management.   
The following benefits can be realized by the utilization of reliability growth management: 

 

4.8.1 Finding Unforeseen Deficiencies.  
The initial prototypes for a complex system with major technological advances will invariably 

have significant reliability and performance deficiencies that cannot be foreseen in the early 

design stages.  This is also true for prototypes that are ―simply‖ the integration of existing 

systems.   

 

4.8.2 Designing-in Improvement through Surfaced Problems.    
Even if some potential problems can be foreseen, their significance might not.  Prototypes are 

subjected to a development testing program to surface the problems that drive the rate of 

occurrence of failures (failure intensity) so that the necessary improvements in system design can 

be made.  The ultimate goal of the development test program is to meet the system reliability and 

performance requirements. 

 

4.8.3 Reducing the Risks Associated with Final Demonstration. Experience has shown that 

in many cases, programs that rely solely on a final demonstration to determine compliance with 

the reliability requirements do not achieve the reliability objectives given the allocated resources.  

Emphasis on reliability performance prior to the final demonstration using quantitative reliability 

growth could substantially increase the chance of passing a final demonstration, or could even 

replace a final demonstration. 
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4.8.4 Increasing the Probability of Meeting Objectives.    
This can be achieved by setting interim reliability goals to be met during the development testing 

program and making the necessary allocation and reallocation of resources to attain these goals.  

A comprehensive approach to reliability growth management throughout the development 

program organizes this process. 

 

4.9 Reliability Growth Process. 

 

4.9.1 Basic Process.   
Reliability growth is the result of an iterative design process.  As the design matures, it is 

investigated to identify actual or potential sources of failures.  Further design effort is then spent 

on these problem areas.  The design effort can be applied to either product design or 

manufacturing process design.  The iterative process can be visualized as a simple feedback loop, 

as shown in Figure 1.  This illustrates that there are four essential elements involved in achieving 

reliability growth: 

a) Failure mode discovery; 

b) Feedback of problems identified; 

c) Failure mode root cause analysis and proposed corrective action; and 

d) Approval and implementation of proposed corrective action. 

 

 

 

 

 

 

 

FIGURE 1.  Reliability Growth Feedback Model. 

 

Furthermore, if failure sources are detected by testing, another element is necessary: 

e) Fabrication of hardware. 

Following redesign, detection of failure sources serves as verification of the redesign effort.  This 

is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.  Reliability Growth Feedback Model  
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4.9.2 Classifying the Failure Modes.   
When a system is tested and failure modes are observed, management can make one of two 

decisions: either not fix the failure mode or fix the failure mode.  Therefore, the Management 

Strategy (MS) places failure modes into two categories: A-modes and B-modes.  A-modes will 

not have corrective action taken, for example if failure modes are associated with commercial 

off-the-shelf (COTS) or legacy systems.  B-modes, on the other hand, will be addressed via 

corrective action.  Note that a failure mode may be initially classified as an A-mode, but 

subsequent conditions may change, causing management to reclassify it as a B-mode and address 

it via corrective action.   

 

4.9.3 Decreasing the Failure Rate.   
Growth is achieved by decreasing the failure rate.  Since A-modes will not be addressed via 

corrective action, the failure rate for A-modes will not change.  Thus only the B-mode corrective 

actions can accomplish growth.  However, a corrective action that is developed and implemented 

for a B-mode will rarely totally eliminate the mode’s failure rate.  As a result, a metric is used to 

determine the fraction decrease in a mode’s failure rate after corrective action implementation, 

known as the fix effectiveness factor (FEF).  FEFs vary according to the commodity or technical 

area.  Note that if an FEF is 0.70, on average, then the failure rate remaining would be 0.30 (or 1 

– FEF) of the initial mode failure rate. 

 

4.9.4 Attaining the Requirement.  
An important question is: Can the requirement be attained with the planned Management 

Strategy and Fix Effectiveness Factor?  In part, this can be answered by considering the growth 

potential (GP), which is the maximum reliability that can be attained with the system design, 

MS, and FEF.  This upper limit on reliability, which may never actually be achieved in practice, 

is attained when all B-modes are found and their corrective actions are incorporated into the 

system with the specified FEF.   

 

4.9.5 Factors Influencing the Growth Rate.  
The rate at which reliability grows depends on how rapidly failure mode discovery, failure 

analysis, fabrication of systems, and retesting/verification is accomplished.  That is, the rate at 

which a system’s reliability is improved is a function of: 

a) The rate at which failure modes are surfaced during testing; 

b) The turnaround time associated with analyzing/implementing corrective actions: 

i. Time associated with performing root cause analysis 

ii. Time associated with the corrective action review and approval process 

iii. Time associated with physical implementation of approved corrective actions 

c) The fraction of initial failure rate addressed by corrective actions - MS; and 

d) The fraction by which the failure rate of fixed modes is reduced - FEF.  

 

4.10 Reliability Growth Management Control Processes.   
There are two basic ways to evaluate the reliability growth process – assessment and monitoring.  

The assessment approach is to quantitatively assess the current reliability based on information 

from the detection of failure sources.  This approach is results oriented. The monitoring approach 

is to monitor activities in the process to assure that they are being accomplished in a timely 

manner and that the level of effort and quality of work are in compliance with the program plan.  
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The monitoring approach is activities oriented and is used to supplement the assessments.  In the 

early stages of a program, the monitoring approach may be relied on entirely due to the lack of 

sufficient objective information.  Each of these methods complements the other in controlling the 

growth process.  

 

Figures 3 and 4 illustrate the assessment and monitoring management processes, respectively, in 

a skeleton form.  The representation of an actual program or program phase may be considerably 

more detailed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.  Reliability Growth Management Model (Assessment 

Approach). 
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4.10.1 Assessment Approach.    
Figure 3 illustrates how assessments may be used to control the growth process.  Reliability 

growth management differs from conventional reliability program management in two major 

ways.  First, there is a more objectively developed growth standard against which assessments 

are compared.  Second, the assessment methods used can provide more accurate evaluations of 

the reliability of the current system configuration.  A comparison between the assessment and the 

planned value will suggest whether the program is progressing as planned.  If the progress is 

falling short, new strategies should be developed.  These strategies may involve the reassignment 

of resources to work on identified problem areas, adjustment of the schedule, or a re-examination 

of the validity of the requirement.  Figure 5 illustrates an example of both the planned reliability 

growth and assessments. 

 

 

 
 

FIGURE 5.  Example of Planned Growth and Assessments. 

FIGURE 4.  Reliability Growth Management Model (Monitoring 

Approach). 
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4.10.2 Monitoring Approach.   
Figure 4 illustrates how monitoring growth activities may be used to control the growth process.  

This activity is a valuable complement to reliability assessments for a comprehensive approach 

to reliability growth management.  Standards for level of effort and quality of work 

accomplishment must, of necessity, rely heavily on the technical judgment of the evaluator.  

Monitoring is intended to assure that the activities have been performed within schedule and 

meet appropriate standards of engineering practice.  It is not intended to second-guess the 

designer, e.g., redo his stress calculations.  A good example of a monitoring activity is the design 

review, which is a planned monitoring of a product design to assure that it will meet the 

performance requirements during operational use.  Such reviews of the design effort serve to 

determine the progress being made in achieving the design objectives.  Perhaps the most 

significant aspect of the design review is its emphasis on technical judgment, in addition to 

quantitative assessments of progress. 

 

4.11 Factors Influencing the Growth Curve’s Shape.    
Such things as the current stage of the development program, the current test phase, the system 

configuration under test, the timing of corrective actions, and the units of measure for test 

duration all influence the growth curve’s shape. 

 

4.11.1 Stages of the Development Program.    
Generally, any system development program is divided into stages, with different objectives for 

each stage.  The names and objectives for each stage in a given development program need not 

be the ones given here.  These stages are given as representative of a typical development 

program: 

 

a) Proposal:  What are the requirements, can they be met, and if so, how and at what 

estimated cost? 

b) Conceptual:  Experimental prototypes may bear little resemblance to the actual system.  

They are for proof-of-principle. 

c) Validation:  Prototypes are built and tested to achieve the performance and reliability 

objectives for the system.   

d) Engineering and Manufacturing Development (EMD):  Systems are built as though they 

are in production and are tested to work out final design details and manufacturing 

procedures. 

 

Quantitative reliability growth management can be used during the Validation and EMD stages 

of the program.  The different nature of the testing occurring during these stages may differ 

enough to cause different rates of growth to occur.  The amount of difference will determine if 

they may be treated as part of the reliability growth planning curve.   

 

4.11.2 Test Phases.   
During the Validation and EMD stages, it is likely that testing will be broken up into alternating 

time periods of active testing, followed by corrective action periods (CAPs).  Each period of 

active testing can be viewed as a testing phase.  Safety related failure modes and failure modes 

that are readily understood and easily mitigated may be incorporated into the system during a test 

phase. Thus reliability growth may occur during a test phase.  However, the most significant 
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growth will occur due to groups of failure modes that are scheduled for implementation in the 

CAP at the conclusion of a test phase. Within a development stage, it is likely that other types of 

testing will be occurring (e.g., performance testing).  If these other tests follow the intended 

OMS/MP well enough, and if corrective actions are made on the basis of these tests, then the 

information gathered may be incorporated into the reliability growth test database.  These would 

then contribute to the reliability growth testing phases.  Due to the CAPs, it is to be expected that 

the reliability will grow from one phase to the next.  The reliability growth planning curve 

should reflect this. 

 

4.11.3 Test Phase Reliabi1ity Growth.   

Based on the activities and objectives of the program, the reliability growth plan should indicate 

for each test phase the levels of reliability that are expected to be achieved, whether reliability is 

constant or growing, the objective at the end of the test phase, and whether corrective actions are 

delayed or incorporated in the test phase.  There are three responses that can be made to each 

identified failure mode:  

a. Incorporate a corrective action during the test phase;  

b. Incorporate a corrective action after the test phase; or 

c.          Incorporate no corrective action.  

 

Figure 6 illustrates the effect of deferring corrective action from the test phase to a CAP.  As 

more corrective actions are deferred, the effectiveness is reduced due to the inability to detect 

ineffective corrective actions and newly introduced failure modes.  Thus some allowance should 

be made for the lesser effectiveness of delayed corrective action.  It is especially important to 

schedule adequate calendar time for the CAP at the end of the test phase.  The calendar time 

must be of sufficient duration to accommodate the expected number of delayed B-modes whose 

fixes are scheduled to be implemented during the CAP. 

 

 

  

FIGURE 6.  Effect of Deferring Corrective Action. 
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When working in terms of test time, a distinct effort involving one or more corrective actions 

will be shown as a vertical jump.  It must be recognized, however, that a certain amount of 

calendar time is required to achieve the jump.  This calendar time, covering test time and 

calendar time for corrective action to configuration 1, may be completely distinct from the 

calendar time used for testing, as illustrated in Figure 7.  Time constraints may require that at 

least some of the calendar time is concurrent with the previous test phase, as illustrated in Figure 

8.  Overlapping corrective action and test in this fashion may yield a less effective corrective 

action, since it is started somewhat prematurely.  The jump in MTBF due to the fixes 

implemented during the CAP will typically be largely determined by the collective B-mode 

failure intensity addressed and the average FEF realized during the CAP. 

 

 

 
FIGURE 7.  Calendar Time Accounting for Test Time and Time Required  

for Corrective Action 
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 Test Phase 2          CAP 
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FIGURE 8.  Calendar Time Accounting for Only Test Time 

 

 

4.11.4 System Configuration.    
In an absolute sense, any change to the design of a system (e.g. hardware, software, training 

procedures, maintenance procedures) constitutes a new configuration.  For our purposes, a 

specific design will be termed a new configuration if there has been one significant design 

change or enough smaller design changes that cause an obviously different failure rate for the 

system.  It is possible that two or more testing phases could be grouped together for analysis 

based on the configuration tested in these phases being substantially unchanged.  It is also 

possible that one design change is so effective at increasing reliability that a new configuration 

could occur within a test phase.  System configuration decisions can also be made on the basis of 

engineering judgment.   

 

4.11.5 Timing of Fixes.   
Fixes are intended to reduce the rate at which the system fails.  Repairs make no change in 

system failure rate.  The time of insertion of a fix affects the pattern of reliability growth. 

 

4.11.5.1  Test-Fix-Test.    
In a pure test-fix-test program, when a failure is observed, testing stops until a corrective action 

is implemented on the system under test.  When the testing resumes, it is with a system that has 

incrementally better reliability.  The graph of reliability for this testing strategy is a series of 

small increasing steps, with each step stretching out longer to represent a longer time between 

failures.  Such a graph can be approximated by a smooth curve, as shown in Figure 9. 

 

 Test Phase 1 

 Test Phase 2    CAP               
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FIGURE 9.  Graph of Reliability in a Test-Fix-Test Phase. 

 

A pure test-fix-test program is impractical in most situations.  Testing is likely to continue with a 

repair, and the fix will be implemented later.  Nevertheless, if fixes are inserted in the test phase 

on a non-instantaneous basis but as soon as possible while testing is still proceeding, the stair-

step like reliability increases and the shape of the approximating curve will be similar, but rise at 

a slower rate.  This is due to the reliability remaining at the same level that it was at when the 

failure happened until the fix is inserted.  Thus the steps will all be of longer length, but the same 

height.  Continuing to test after the fix is inserted will serve to verify the effectiveness of the 

corrective action. 

 

4.11.5.2  Test-Find-Test.    
During a test-find-test program, the system is tested to determine failure modes.  However, 

unlike the test-fix-test program, fixes are not incorporated into the system during the test.  

Rather, the fixes are all inserted into the system at the end of the test phase and before the next 

testing period.  Since a large number of fixes will generally be incorporated into the system at the 

same time, there is usually a significant jump in system reliability at the end of the test phase.  

The fixes incorporated into the system between test phases are called delayed fixes.  See Figure 

10. 

 

 
 

FIGURE 10.  Graph of Reliability in a Test-Find-Test Program. 

 

 

4.11.5.3  Test-Fix-Test with Delayed Fixes.    
The test program commonly used in development testing employs a combination of the previous 

two types of fix insertions.  That is, some fixes are incorporated into the system during the test, 

while other fixes are delayed until the end of the test phase.  Consequently, the system reliability 
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will generally be seen as a smooth process during the test phase and then jump due to the 

insertion of the delayed fixes.  See Figure 11. 

 

 
 

FIGURE 11.  Graph of Reliability in a Test-Fix-Test Program with Delayed Fixes. 

 

4.11.5.4  Example of Possible Growth Patterns Resulting from Varying the Timing of 

Fixes.    
In order to reach the goal reliability, the development testing program will usually consist of 

several major test phases.  Within each test phase, the fix insertion may be carried out in any one 

of the three ways discussed above.  As an example, suppose that testing were conducted during 

the Validation and EMD stages of the program.  Each stage would have at least one test phase, 

implying a minimum of two test phases for the program.  In this case, there would be 32 = 9 

general ways for the reliability to grow during the development test. See Figure 12. Note that a 

development stage may consist of more than one distinct test phase.  For example, testing may be 

stopped at several points during the EMD stage to allow for CAPs, during which delayed fixes 

are incorporated into the system.  In such a case, testing would be comprised of a sequence of 

test phases, with each test phase separated by a CAP.  
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FIGURE 12.  The Nine Possible General Growth Patterns for Two Test Phases. 

 

 

Row 1 shows Phase 1 as having all fixes delayed until the end of the testing phase.  Row 2 shows 

Phase 1 as having some fixes inserted during test and some delayed.  Row 3 shows Phase 1 as 

having all fixes inserted during test, with none delayed.  Column 1 shows Phase 2 as having all 

fixes delayed until the end of the testing phase.  Column 2 shows Phase 2 as having some fixes 

inserted during test and some delayed.  Column 3 shows Phase 2 as having all fixes inserted 

during test, with none delayed.  Figures 12.1 and 12.9 represent the two extremes in possible 

growth test patterns.   

 

4.11.5.5  Statistical Advantages of Test-Fix-Test.   
There are some distinct statistical advantages to following a complete test-fix-test program: 

a) The estimated value of reliability at any point along the smooth growth curve is an 

instantaneous value.  That is, it is not dragged down by averaging with the failures that 

accrued due to earlier (and hopefully) less reliable configurations. 

b) Confidence limits about the true value of reliability can be established. 

c) While the impact of the jumps in reliability can be assessed using a mix of some 

engineering judgment (this will be discussed in the section on Reliability Growth 

Projection) and test data, the estimate of reliability in a test-fix-test program is based 

solely on data. 

d) The effectiveness of corrective actions is continuously assessed in the estimate of 

reliability. 
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4.11.6  Growth Curve Re-initialization.    
The differences in the growth curves between phases shown in Figures 12.5 and 12.6 represent 

the difference mentioned in Section 4.11.1 (Stages of the Development Program).  Underlying 

Figure 12.6 is the assumption that the testing environment and engineering efforts are the same 

across test phases, thus the continuation of the same growth curve into the succeeding phase, 

after the jump for delayed fixes.  In Figure 12.5 a factor influencing the rate of growth has 

substantially changed between the phases and is reflected in a new growth curve for the 

succeeding phase.  This is called re-initializing the growth curve.  It must be emphasized that re-

initialization is only justified if the testing environment is so different as to introduce a new set 

of failure modes, or the engineering effort is so different as to be best represented as a totally 

new program. 

 

4.11.7  Shape Changes Due to Calendar Time.    
Reliability growth is often depicted as a function of test time for evaluation purposes.  It may be 

desirable to portray reliability growth as a function of calendar time.  This can be accomplished 

by determining the number of units of test duration that will have been completed at each 

measure point in calendar time and then plotting the reliability value that corresponds to the 

completed test duration above that calendar point.  This is a direct function of the program 

schedule.  Figure 13 shows the reliability growth of a system as a function of test time and 

calendar time. 

 

 

 
 

FIGURE 13.  Comparison of Growth Curves Based on Test Duration Vs Calendar Time. 

 

 

4.12 Reliability Growth Programmatic Concepts. 

 

4.12.1 Levels of Consideration for Planning and Controlling Growth.   Planning and 

controlling reliability growth can be divided along both a program basis and an item under test 

basis. The appropriate level of consideration can vary at different times during the development.  

In addition, systems may be classed as to their usage. 

    

a) Program considerations: 
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i. Global: This approach treats reliability growth on a total basis over the entire 

development program. 

ii. Local: This approach treats reliability growth on a phase-by-phase basis. 

b) Item Under Test considerations: 

i. System Level:  The entire system as it is intended to be fielded is tested. 

ii. Subsystem Level:  The obvious meaning is the testing of a major and 

reasonably complex portion of the whole system (e.g., an engine for a 

vehicle).  Sometimes, the subsystem would seem to be an autonomous unit, 

but because the requirement is for this unit to operate in conjunction with 

other units to achieve an overall functional goal, it is really only part of ―the 

system‖ (e.g., radar for an air defense system). 

c) Usage of System – continuous and discrete models:  

i. Continuous models are those that apply to systems for which usage is 

measured on a continuous scale, such as time in hours or distance in miles.   

ii. Discrete models are those that apply to systems for which usage is measured 

on an enumerative or classificatory basis, such as pass/fail or go/no-go.  For 

discrete models, outcomes are recorded in terms of distinct, countable 

events that give rise to probability estimates. 

 

4.12.2 Analysis of Previous Programs.    
Analysis of previous similar programs is used to develop guidelines for predicting the growth 

during future programs.  Such analysis may be performed on overall programs, individual 

program phases, or both.  Of particular interest are the patterns of growth observed and the effect 

of program characteristics on initial values and other planning model parameters.   

 

 

4.13 Reliability Growth Planning Concepts. 

 

4.13.1 Planned Growth Curve.   

The planned growth curve should portray a picture over the program Validation and EMD stages 

of a feasible reliability growth path, from an achievable initial reliability to a goal reliability that 

supports demonstrating the reliability requirement.  It is an essential part of the reliability growth 

management methodology and is important to any reliability program.  The planned growth 

curve is constructed early in the development program, generally before hard reliability data are 

obtained and is typically a joint effort between the program manager and contractor.  Its primary 

purpose is to provide management with achievable reliability benchmarks at any point in the 

Validation and EMD program stages and to provide a basis for evaluating the actual progress of 

the reliability program based upon generated reliability data.  The planned growth curve can be 

constructed on a phase-by-phase basis, as shown in Figure 14. 
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FIGURE 14.  Development of Planned Growth Curve on a Phase by Phase Basis. 

 

 

4.13.2 Idealized Growth Curve.    
An Idealized Growth Curve is a planned growth curve that consists of a single smooth curve 

based on initial conditions, planned Management Strategy, and other growth model parameters.  

This curve is a strict mathematical function of the input parameters across the measure of test 

duration (e.g., time, distance, trials), thus the name ―Idealized.‖  No program can be expected to 

assume this exact mathematical ideal shape, but it is useful in setting interim goals.  See Figure 

15. 

 

 

 
 

 

FIGURE 15.  Global Analysis Determination of Planned Growth Curve. 
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4.13.3 Other Planning Considerations.    
It is important for sufficient testing to be planned and for the testing to be reflective of the 

OMS/MP.  In reliability demonstration testing, the concept of operating characteristic (OC) 

curves has been used in planning test time and allowable failures. Recall that for a fixed 

configuration demonstration test, the discrimination ratio – the reliability associated with the 

producer (contractor) risk, , over the reliability associated with the consumer (Government) 

risk, has often been used as a guide to determine test time.  As a general rule of thumb, the 

MTBF discrimination ratio of the contractor design-to MTBF to the government requirement 

MTBF (to be demonstrated with confidence) is generally around 2-3.   

 

This concept is extended to developing reliability growth planning curves where the growth 

curve follows the Duane failure pattern, i.e., power law expected number of failures.  In 

particular, a system planning curve and associated test duration can be constructed such that if 

growth occurs in accordance to the planning curve for the planned test duration, then with a 

prescribed probability, growth test data will be generated that provide a  statistical lower 

confidence bound (LCB) that will meet or exceed the technical requirement (TR).   

 

For reliability growth, the ratio of interest is the contractor’s goal MTBF, MG, to the MTBF 

technical requirement, TR (which is to be demonstrated with confidence).  A given reliability 

growth curve has an associated consumer (Government) and producer (contractor) risk.  These 

risks, along with multiple other testing, program, and reliability growth parameters are used to 

select the best reliability growth curve for the program. Such reliability growth consumer and 

producer risks are of interest when a program wishes to demonstrate an MTBF value with 

confidence based on reliability growth test data and have a reasonable chance of doing so.  Such 

a demonstration should not be confused with a possibly mandated Initial Operational Test (IOT) 

demonstration of an operational required MTBF.  This kind of demonstration is typically 

conducted at the conclusion of the developmental growth test and is conducted with mature 

production units.   

 

Reliability growth potential MTBF, MGP, is a theoretical upper limit on reliability which 

corresponds to the reliability that would result if all B-modes were surfaced and fixed with the 

assumed assessed FEF.  It can be shown that  

 

 

 

where MI is the initial MTBF, MS is the Management Strategy,  and d  is the average FEF.  

These planning parameters are termed consistent provided MG < MGP. 

 

4.13.4 Threshold.   
A threshold is a value in the rejection region of a statistical test of hypothesis, which indicates 

that an achieved or demonstrated reliability below the value is not in conformance with the 

idealized growth curve.  A threshold value is not a LCB on the true reliability; it is used simply 

to conduct a test of hypothesis.  Threshold values are computed at particular points in time, 

referred to as milestones, which are major decision points.  The Threshold Model can be used to 

compare a reliability point estimate, which is based on actual failure data from a growth test, 
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against a theoretical threshold value.  The test statistic in this procedure is the point estimate of 

the MTBF achieved at the milestone calculated from the test data.  If this estimate falls at or 

below the threshold value, this would raise a red flag and indicate that the achieved reliability is 

statistically not in conformance with the idealized growth curve.  At that point, management 

might want to take action to restore reliability to a higher level, perhaps through restructuring the 

program, a more intensive corrective action process, a change of vendors, additional low-level 

testing, etc. 

 

4.14 Reliability Growth Tracking Concepts. 

 

4.14.1 Demonstrated Reliability.    
A demonstrated reliability value is based on actual test data and is an estimate of the current 

attained reliability.  The assessment is made on the system configuration currently undergoing 

test, not on an anticipated configuration, nor a prior configuration.  This number allows for the 

effects of introduced fixes into the system as its calculation incorporates the trend of growth 

established, to date, over the current test phase (or possibly the combined test phases). 

 

4.14.2 Reliability Growth Tracking Curve.    
The reliability growth tracking curve is the curve that best fits the data being analyzed.  It is 

typically based on data solely within one test phase.  This is due to the fact that between test 

phases, there is often a CAP during which a group of corrective actions are implemented which 

significantly increase the reliability. In this commonly encountered situation, the tracking model 

will not usually statistically fit the data over the two phases bracketing the CAP.  However, in 

the instances where the tracking model is in adequate conformance with the test data from 

several phases, it may be used to track growth over the combined test phases.  Whatever period 

of testing is used to form a database, this curve is the statistical best representation from a family 

of growth curves of the overall reliability growth of the system.  It depicts the trend of growth 

that has been established over the database.  Thus, if the database covers the entire program to 

date, the right end point of this curve is the current demonstrated reliability.  Figure 16 depicts 

this reliability growth tracking curve.  To the left of the line is the demonstrated reliability using 

data to date, and to the right of the line is the extension of the planning curve for the expected 

reliability growth. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 16.   Reliability Growth Tracking Curve. 
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4.15 Reliability Growth Projection Concepts. 

 

4.15.1 Extrapolated Reliability.    
Extrapolating a growth curve beyond the currently available data shows what reliability a 

program can be expected to achieve as a function of additional test duration, provided the 

conditions of test and the engineering effort to improve reliability are maintained at their present 

levels (i.e., the established trend continues) in the absence of a significant group of delayed 

corrective actions. 

 

4.15.2 Projected Reliability.    
A reliability projection is an assessment of reliability that can be anticipated at some future point 

in the development program.  The projection is based on the achievement to date and engineering 

assessments of future program characteristics.  Projection is a particularly valuable analysis tool 

when a program is experiencing difficulties, since it enables investigation of program 

alternatives.  See Figure 17. 

 

 
 

FIGURE 17.  Extrapolated and Projected Reliabilities. 

 

 

4.16 Models Covered in this Handbook. 

There are 3 types of reliability growth models covered in this Handbook – planning, tracking, 

and projection. 

 

The planning models include: 

a) AMSAA Crow Planning Model 

b) System Level Planning Model (SPLAN) 

c) Subsystem Level Planning Model (SSPLAN) 

d) Planning Model Based on Projection Methodology (PM2) - Continuous 

e) Planning Model Based on Projection Methodology - Discrete 

f) Threshold Model 

 

The tracking models include: 

a) AMSAA Reliability Growth Tracking Model – Continuous (RGTMC) 

b) AMSAA Reliability Growth Tracking Model – Discrete (RGTMD) 

c) Subsystem Level Tracking Model (SSTRACK) 
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The projection models include: 

a) AMSAA-Crow Projection Model (ACPM) 

b) Crow Extended Reliability Projection Model 

c) AMSAA Maturity Projection Model (AMPM) 

d) AMSAA Maturity Projection Model Based on Stein Estimation (AMPM-Stein) 

e) Discrete Projection Model (DPM) 

 

4.17 Sources for Models Covered in this Handbook. 

For access and/or details on computational programs available for the reliability growth 

planning, tracking and projection models presented in this handbook, it is suggested that the 

reader visit websites or contact companies that may offer these capabilities.  Potential sources for 

these, or similar tools, include AMSAA www.amsaa.army.mil, ReliaSoft 

Corporation(www.reliasoft.com),, Reliability Information Analysis Center (RIAC, 

www.theriac.com), and Relex (www.relex.com).  

  

http://www.amsaa.army.mil/
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5. RELIABILITY GROWTH PLANNING.   

 

5.1 Introduction.   
The goal of reliability growth planning is to optimize testing resources, quantify potential risks, 

and plan for successful achievement of reliability objectives.  The growth plan can serve as a 

significant management tool in scoping out the required resources to enhance system reliability 

and improve the likelihood of demonstrating the system reliability requirement.  Critical aspects 

underlying this process include addressing program schedules, amount of testing, resources 

available, and the realism of the test program in achieving its requirements.  Planning activities 

include establishing test schedules, determining resource availability in terms of facilities and 

test equipment, and identifying test personnel, data collectors, analysts and engineers.  

Additionally sufficient calendar time during the program should be planned to analyze, gain 

approval and implement corrective actions.  Planning is quantified and reflected through a 

reliability growth program plan curve.  This curve may be used to establish interim reliability 

goals throughout the test program.  Two significant benefits of reliability growth planning are: 

a) Can perform trade-offs with test time, initial reliability, final reliability, confidence 

levels, requirements, etc to develop a viable test program. 

b) Can assess the feasibility of achieving a requirement given schedule and resource 

constraints by using historical values for parameters. 

 

5.1.1 Basic Model Approaches Covered.  
The planning models covered in this handbook are based on two basic approaches – the power 

law and the AMSAA Maturity Projection Model (AMPM).  The power law approach uses an 

assumed cumulative relationship between the expected number of discovered failures and test 

duration.  The AMPM approach uses an assumed cumulative relationship between the expected 

number of discovered B-modes and the test duration, which gives rise to a reliability growth 

relationship between the expected system failure intensity and the cumulative test duration.  

 

5.1.2 Planning Models Covered. 

The reliability growth planning models presented in this handbook include:  

a) AMSAA Crow Planning Model  

b) System Level Planning Model (SPLAN)  

c) Subsystem Level Planning Model (SSPLAN)  

d) Planning Model Based on Projection Methodology (PM2) Continuous 

e) Planning Model Based on Projection Methodology (PM2)-Discrete 

f)    Threshold Model 

Models a), b), and c) use the power law approach, whereas models d) and e) use the AMPM 

approach.  Model f), the Threshold Model, is not a growth model per se, but rather a program or 

methodology to develop interim goals to ascertain whether the program is proceeding in 

accordance with the planned growth curve.  

 

5.1.3 Planning Model Limitations. 

The foremost limitation associated with developing reliability growth planning models is that the 

testing utilized for reliability growth planning should be reflective of the OMS/MP.  If the test 

environment during development reasonably simulates the mission environment stresses, then it 
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may be feasible to use the growth test data to statistically estimate the demonstrated reliability.  

Such use of the growth test data could eliminate or supplement a follow-on fixed configuration 

reliability demonstration test for compliance testing.   

 

5.1.4 Demonstrating Reliability Requirements with Statistical Confidence.  
The adaptation of Operating Characteristic (OC) curve methodology in the development of 

growth curves allows one to plan for demonstrating requirements with stated confidence, 

typically 80%.  The demonstrations are typically conducted in a fixed configuration test. 

 

In broad terms, the consumer (Government) risk is the probability of accepting a system when 

the true reliability is below the TR and the producer (contractor) risk is the probability of 

rejecting a system when the true reliability is at least the contractor's target value (which is set 

above the TR).   

 

For the non-growth case (constant mature configuration), the parameters defining the reliability 

demonstration test consist of the test duration, DEMT , and the allowable number of failures, c.  

The "acceptance" or "passing" criterion is simply cfobs  , where f obs denotes the observed 

number of failures. 

 

The probability of observing i failures in TDEM  is distributed as Poisson and thus the probability 

of acceptance (observing c or fewer failures in TDEM) is  

 

P Accept = Prob A; M, c, TDEM  = Prob fobs ≤ c 

=  Prob fobs = i =  e−TDem M 
 TDEM M  i

i!

c

i=0

c

i=0

 

 

where M = MTBF. 

  

To ensure that "passing the demonstration test" is equivalent to demonstrating the TR with at 

least confidence level  (e.g.,  = 0.80 or  = 0.90), c must be chosen such that 

 

 obsobs fTRcf   

where TR > 0 and  obsf  denotes the value of the 100  percent LCB when obsf  = c failures 

occur in the demonstration test of length DEMT .  That is, c is chosen to be the largest non-negative 

integer k that satisfies the inequality  

 

 e−TDEM TR 
 TDEM TR  i

i!

k

i=0

≤ 1 − γ 

 

Recall that the OC curve associated with a reliability demonstration test is the graph of the 

probability of acceptance, i.e., Prob (A;M,c, DEMT ) given as a function of the true but unknown 

constant MTBF, M, as depicted in Figure 18. 
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FIGURE 18.  Example OC Curve for Reliability Demonstration Test. 

 

 

The consumer (Government) risk associated with this curve, called the Type II risk, is defined by 

Type II  ∆  Prob A; TR, c, TDEM   
 

Thus, by the choice of c, 

Type II ≤ 1 − γ 
 

For the producer (contractor) to have a reasonable chance of demonstrating the TR with 

confidence , the system configuration entering the reliability demonstration test must often have 

an MTBF value of GM  (referred to as the contractor's developmental goal or target MTBF) that 

is considerably higher than the TR.  The probability that the producer (contractor) fails the 

demonstration test, given that the system under test has a true MTBF value of GM , is termed the 

producer (contractor) risk, or Type I risk.  Thus 

Type I = 1 − Prob A; MG , c, TDEM   
 

If the Type I risk is higher than desired, then either a higher value of GM  should be attained prior 

to entering the reliability demonstration test or DEMT  should be increased.  If DEMT  is increased, 

then c may have to be readjusted for the new value of DEMT  to remain the largest non-negative 

integer that satisfies the Type II inequality.   
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The discrimination ratio, MG /TR is commonly used as an aid to determine test plans for the non-

growth situation.   

 

5.1.5 Planning Areas.    
There are two key planning areas: elements under management control and potential risk 

elements during the planning phase.  Elements under management control include: 

a) Management Strategy (MS): the fraction of system initial failure rate addressed by 

corrective actions; 

b) Rate at which failure modes are surfaced; 

c) Turnaround time for analyzing and implementing corrective actions; and 

d) Fix Effectiveness Factor (FEF): the fraction reduction in the rate of occurrence of modes 

after corrective action. 

 

The potential risk elements during the planning phase include: 

a) Initial MTBF (MI); 

b) Ratio of MI to final developmental goal MTBF, MG; 

c) Total test time, T. 

 

 

Table I provides historically-based AMSAA estimates for the ratio of MI to MG and for a 

collection of system average FEFs (Ellner, Trapnell (1990)).       

 

 

TABLE I. Historical growth parameter estimates 

 

Parameter Mean/Median Range 

Initial to Mature Ratio –  MI/MG    0.30/0.27 0.15-0.47 

Fix Effectiveness Factor (FEF)
1
 0.70/0.71 0.55-0.85 

 

The growth rate and FEF information in Tables I and II may be used as a guide in determining 

the reasonableness of these parameters based on this historical data.  However, past experience 

has shown that to achieve successful results in the IOT&E (which is conducted at the conclusion 

of the developmental growth program), it is crucial to enter the reliability growth test conducted 

in the Engineering and Manufacturing Developmental (EMD) phase with an MI that yields an 

MTBF growth potential, MGP, that is sufficiently above MG.  Doing so allows one to achieve a 

reasonable ratio of MG to MGP, which is recommended by the U.S. Army Evaluation Center to be 

in the range of 0.60 to 0.80.   For a given MS and average FEF, the MGP is directly proportional 

to MI.  Thus, to support the AEC recommended upper limit of the MG to MGP ratio (0.80), the MI 

to MG ratio must be greater than or equal to the mean historically achieved ratio displayed in 

Table I (0.30).  To achieve such an MI requires conducting a comprehensive set of Design for 

Reliability activities (J. Hall Jun 2009) prior to entering EMD.  Failure to achieve a sufficiently 

high MI in past developmental programs has resulted in an unacceptably high percentage of DoD 

                                                 
1
 Software fixes may have higher FEFs. 
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developmental systems failing to meet their reliability thresholds in the IOT&E, even as a point 

estimate. (J. Hall Jun 2009)   

For planning purposes, the MS during early or prototype testing could exceed 0.95 for the 

developmental portion of the system.  During subsequent testing, the MS for the developmental 

portion of the system typically needs to be at least 0.90 for a successful reliability developmental 

program, and often must be near 0.95 to achieve a sufficiently high MGP relative to MG.  For most 

systems, it is not prudent to plan on achieving a MS higher than 0.96 for the developmental 

portion of the system. 

 

5.1.6   Reliability Growth Planning Checklist. 

The following provides a checklist for reviewing reliability growth planning curves: 

a) Goal reliability needs to be sufficiently high to have adequate probability of passing the 

IOT&E or other reliability demonstration test. 

b) The expected initial reliability, MI or RI, should be based on expected maturity and prior 

information (e.g., from previous or similar systems, technology development, or such 

information as available).    

c) The ratio of MI to MG should not be too low (e.g., less than 0.15).  

i. Desirable to have the ratio above usual historical range of 0.20 to 0.35  

Need to achieve sufficient growth in design phase prior to EMD test phase to 

increase the ratio of MI to MG beyond the historical range. 

d) The expected number of failures associated with the planning curve and test duration 

should be sufficiently large to allow enough corrective action opportunities to grow from 

MI to MG. 

e) There needs to be sufficient calendar time, facility assets, and engineering personnel to 

ensure timely implementation of effective corrective actions to surfaced failure modes 

prior to IOT&E. 

f) If corrective actions are to be implemented at only a few designated points during the 

development program, then the depicted expected growth pattern should reflect this. 

 

5.2 AMSAA Crow Planning Model. 

This section contains only a minimum of the details that were contained in the original version of 

this handbook (AMSAA Feb 1981). For a more detailed discussion of this model and to 

reference several examples, it is recommended that the reader refer to the original version of this 

handbook (AMSAA Feb 1981). 

 

5.2.1 Purpose.   The purpose of the AMSAA Crow Planning Model is to construct idealized 

system reliability growth curves, identify the test time and growth rate required to improve 

system reliability, and aid in demonstrating the system reliability requirement as a point estimate.    

  

5.2.2 Assumptions.    
The assumptions associated with the AMSAA Crow Planning Model include: 

a) Within a test phase, reliability growth can be modeled as a Non-Homogeneous Poisson 

Process (NHPP) with power law mean value function, tt; and  

b) Based on the failures and test time within a test phase, the cumulative failure rate is linear on 

a log-log scale. 
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5.2.3   Limitations.   
The limitations associated with the model include: 

a) The system must be complex (i.e., number of potential failures should be large enough to 

comply with NHPP assumption); 

b)  Sufficient opportunities for implementation of corrective actions are required to allow 

growth to be portrayed as a smooth curve; and 

c) Reliability growth testing should be reflective of the OMS/MP. 

 

5.2.4   Benefits.   
The benefits associated with the AMSAA Crow Planning Model include:  

a) Allows for generation of a target idealized growth curve; and 

b) Can be utilized for discrete data when there are a large number of trials and low probability of 

failure. 

 

5.2.5   Planning Factors.   

The idealized curve has a baseline value MI over the initial test phase, which ends at time t1.  MI 

is the average MTBF over the first test phase.  From t1 to the end of testing at time T, the 

idealized curve increases steadily according to a learning curve pattern till it reaches the final 

reliability requirement, MF.  T and the growth rate are iterated to develop the plan satisfying 

the constraints.  Subsequent to publishing the original version of this handbook (AMSAA Feb 

1981) and prior to the development of SPLAN, a function, Prob, was developed that assured a 

designated probability of observing at least one failure in the initial time t. Subsequently the 

Management Strategy, MS, was also included.  For MS=1, the function is: 

                                                   Prob = 1 − e
− 

tI
M I
 
                                            

which for Prob = 0.95 results in t1 approximately equal to 3 times MI.  After development of MS, 

3*(MI /MS) was used to satisfy the Prob of 0.95.  If no significant B-mode corrective actions are 

planned until the first CAP, then tI should be the test time until the first CAP. 

 

5.2.6   Background of AMSAA Crow Planning Model.   

The original version of this handbook (AMSAA Feb 1981) is based on Duane’s work and 

Crow’s more generalized work.  Duane analyzed data for several systems and noted that if fixes 

to improve reliability are incorporated into the design of a system under development, then on a 

log-log plot, the graph of cumulative failure rate vs. cumulative test time is linear.   

  

5.2.6.1 Duane’s Growth Model.  

The Duane log-log plot of the straight line and linear regression fit is also known as The Duane 

Postulate:   

log C t = δ − α log t 
 

Taking the anti-log, C t = λt−α  where δ = ln λ. 

      

  

 

Duane’s model has two parameters:  α and λ.  α is the shape parameter, which determines the 

shape of the growth curve.  λ is the scale or size parameter for the curve.  With these two 

parameters, the cumulative number of failures, N(t), the average failure rate, C(t), and the 
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instantaneous failure rate, r(t), can be calculated for any time t within the test.  Further, given α 
and λ, it is possible to solve for t, the test time it will take to achieve a specific reliability.  This 

assumes that the factors affecting reliability growth remain unchanged across the development. 

 

5.2.6.2 Drawbacks to Duane’s Method.  

Duane stated that α could be universally treated as being 0.5, the modal value within his 

database.  This has since been shown to be unrealistic, as per Table II.  All Duane MTBF growth 

curves pass through the origin of the graph on a linear-linear plot, imputing zero reliability at the 

start of test.   The method is also a deterministic estimation of the regression, which makes no 

allowance for variation. 

Table II  Historical Growth Rate Estimates 

System Type Mean/Median Range 

One Shot (Missiles)                       .046/0.47 0.27-0.64 

Time or Distance Based 0.34/0.32 0.23-0.53 

 

5.2.7  Development of AMSAA Crow Planning Model.   
Crow explored the advantages of using a NHPP with a Weibull intensity function to model 

several phenomena, including reliability growth.  If system failure times follow the Duane 

Postulate, then they can be modeled as a NHPP with Weibull intensity function (i.e., based on 

the NHPP with power law mean value function).  To make the transition from Duane’s formulae 

to the Weibull intensity functional forms, β has to be substituted for 1- α.  Thus the parameters in 

the AMSAA Crow Planning Model are λ and β, where β determines the shape of the curve.  The 

physical interpretation of β (called the growth parameter) is the ratio of the average (cumulative) 

MTBF to the current (instantaneous) MTBF at time t. 

 

Even though Crow’s growth parameter estimate is still interpreted as the estimate of the negative 

slope of a straight line on a log-log plot, the estimates of λ and β differ from Duane’s procedures 

in that the estimation procedure is Maximum Likelihood Estimate (MLE), not least squares, thus 

each model’s parameters correspond to different straight lines. 

 

The reliability planning curve may extend over all the test phases or just over one test phase.  

Typically a smooth growth curve is portrayed which represents the overall expected pattern 

growth over the test phases.  As noted earlier, it can be modeled as a NHPP with power law 

mean value function (expected number of failures as a function of cumulative test time) E(N(t)) 

= t
which is comparable to the global pattern noted by Duane.  Taking the derivative we 

obtain the idealized reliability growth pattern with failure intensity function (t) given by 

ρ t = λβtβ−1, 0 < 𝛽 < 1.  Thus, as with Duane, it has a singularity at t = 0.   

The methodology is based on first specifying an idealized curve that satisfies the expected 

number of failures at the end of each test phase with cumulative test times t1, t2, ..., tk.  For 

planning purposes, the overall growth trend is represented only for t > t1. It simply utilizes a 

constant or average failure rate,  ∅1 = M1
−1, over the first test phase.  The constant  ∅1  is chosen 

such that the expected number of failures is satisfied for t = t1. Doing so, it follows that the 

MTBF growth trend for t > t1 and  ∅1 is given by, 
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                 MTBF  t =   
M1                        0 ≤ t ≤ t1  

M1  
t

t1
 
α
 1 − α −1     t > t1

                              

 

5.2.8   Potential Issues.   

In using the previous equations, one needs to be careful not to automatically equate M1 to the 

planning parameter, MI, defined as the initial MTBF.  In general MI  ≤ M1.  The two MTBFs 

should be equated only if no growth is planned over the first test phase, since M1 is the planned 

average MTBF over the initial test phase.  The growth rate  is used as a measure of 

programmatic risk with respect to being able to grow from M1 to MF = MTBF(T) in test time T.  

The higher  is relative to past experience, the greater the risk of attaining MF.  MTBF(T) is a 

strictly increasing function of the ratio T/t1  and can be made as large as desired by making t1 

sufficiently small.  One should guard against artificially lowering  by selecting t1 so small that 

no significant amount of fix implementation is expected to occur until a corrective action period 

that is beyond t1.    

 

A reliability projection concept, growth potential (GP), is useful in considering the 

reasonableness of the idealized curve.  The growth potential, MGP , is the theoretical value that 

would be reached if all B-modes were surfaced and corrected with the assumed or assessed 

FEFs.  Assuming an average FEF of d, a Management Strategy of MS, and an initial MTBF of 

MI, one can express the GP MTBF as MGP = MI /(1 – (MS)d).                                           

 

If the final MTBF on the idealized growth curve is not below the MGP for reasonable planning 

values of MS and d, then even if the growth rate  appears modest, it might not be sustainable 

over the entire period for which the model has to be applied.  Note that even with a reasonable 

choice for tI, any value of MF can eventually be obtained since there is no upper limit implied for 

MF.  This is true even using a growth rate that appears to be reasonable based on past experience 

with similar types of systems. 

 

 

5.2.9   Development of the Planned Growth Curve.   

The role of the idealized growth curve is to substantiate that the planned growth follows a 

learning curve which, based on previous experience, is reasonable and can be expected to be 

achieved. In general, there are two basic approaches for constructing planned growth curves.  

The first method is to determine the idealized growth pattern that is expected or desirable, and to 

use this as a guide for the detailed planned curve.  The second method is just the reverse.  In this 

case a proposed planned curve is first developed which satisfies the requirement and interim 

milestones.  The idealized curve is then constructed and evaluated to determine if this learning 

curve is reasonable when compared to historical experience.  If not acceptable a new detailed 

curve would need to be developed.  

 

 

5.2.10   Determining the Starting Point.   
A starting point for the planned growth curve may be determined from (1) using information 

from previous programs on similar systems, (2) specifying a minimum level of reliability that 
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management requires to be demonstrated early in order to have assurance that the reliability 

goals will be met, and (3) conducting an engineering assessment of the design together with any 

previous test data that may exist. e.g., bench test, prototype test.  The practice of arbitrarily 

choosing a starting point, such as 10% of the requirement, is not recommended. Every effort to 

obtain information even remotely relevant to a realistic starting point should have been 

exhausted before an arbitrary figure can be used. See also the example cited in the Planning 

Factors paragraph 2.2.5 

 

5.2.11   Development of the Idealized Growth Curve.   
During development, management should expect that certain levels of reliability be attained at 

various points in the program in order to have assurance that reliability growth is progressing at a 

sufficient rate to meet the requirement. The idealized curve portrays an overall characteristic 

pattern which is used to determine and evaluate intermediate levels of reliability and construct 

the program planned growth curve. Growth profiles on previously developed, similar type 

systems may provide significant insight into the reliability growth process.  If the learning curve 

pattern for reliability growth assumes that the cumulative failure rate versus cumulative test time 

is linear on log-log scale, then the following method is appropriate for construction of the 

idealized growth curve.   

 

The idealized curve has the baseline value MI over the initial test phase which ends at time t1. 

The value MI  is the average MTBF over the first test phase. From time t1 to the end of testing at 

time T, the idealized curve M(t) increases steadily according to a learning curve pattern till it 

reaches the final reliability MF. The slope of this curve on the log-log plot in Figure 19 is the 

growth parameter .  The parametric equation for M(t) on this portion of the curve is M t =

MI  
t

t1
 
α
 1 − α −1. 

 

 
 

FIGURE 19.  Idealized Growth Curve 

 

 

5.2.12  Equations and Metrics.  
This model assumes that the cumulative failure rate versus cumulative test time is linear on log-

log scale. It is not assumed that the cumulative failure rates follow the same growth pattern 

within test phases. In fact, if all fixes are incorporated into the system at the end of a test phase, 
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then the reliability would be constant during the test phase.  Thus, no growth would occur in the 

test phase. 

 

To illustrate this approach, let t1, t2, 
…

,tk denote the cumulative test times which correspond to the 

ends of test phases. It is assumed that N(ti)/ti versus ti , i = 1, 2,…, K, are linear on 1og-log scale, 

where N(ti) is the cumulative number of failures by time ti.  That is, log N(ti)/ti is linear with 

respect to log ti. This implies that log N(ti)/ti can be expressed as log N(ti)/ti =  -  log ti , where 

 and  are, respectively, intercept and slope parameters. Let I denote the initial average failure 

rate for the first test phase, i.e., I = N(t1)/t1. Since log I =  - log t1, it follows that  = log I 

+  log t1. The cumulative failure rate can be expressed as  

N ti ti = λI  
ti

t1
 
−α

. 

 
The idealized growth curve shows that the initial average MTBF over the first test phase is MI, 

and that reliability growth from this average begins at t1. This jump is indicative of delayed fixes 

incorporated into the system at the end of the first test phase. The idealized curve M(t) is a guide 

for the average MTBF over each test phase. Further given that  

   

M(t) = MI (t / t1)
 

(1 - )
-1

   for t > t1, 

  

then the average failure rate and the average MTBF for the i-th test phase can be determined by  

i = (N(ti) – N(ti-1)) / (ti –
 
ti-1), and Mi = 1/i, where N(ti) = I t1 (ti / t1)

1-
See Figure  20. 

 

 
 

FIGURE 20.  Average MTBF over i
th

 Test Phase. 

 

In the application of the idealized growth curve model, the final MTBF value MF to be attained 

at time T is set equal to M(T), i.e., MI (T /t1)
)

-1
 = MF. 

 

The parameters MI and tl of this model have the physical interpretations that MI is the initial 

average MTBF for the system and t1 is the length of the first test phase in the program. The 

parameter  is a growth rate.  
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5.2.13 AMSAA Crow Planning Model Example.  

Specific examples of how to determine the idealized growth curve, test phase growth, and test 

time needed are not reproduced here but may be seen in the original version of this handbook 

(AMSAA Feb 1981). 

 

5.3 System Level Planning Model (SPLAN). 

 

5.3.1  Purpose.   
The purpose of SPLAN is to construct an idealized system reliability growth curve and 

determine an associated test duration that has the following property:  If the system grows along 

the idealized curve for the associated test duration then, with a prescribed probability, the system 

level growth test data realized over the test period will demonstrate a stated MTBF value at a 

specified statistical confidence level.   

 

The stated system MTBF value to be demonstrated with statistical confidence from the growth 

test data will be referred to as the technical requirement and denoted by TR in this section and 

section 5.4. 

 

5.3.2 Assumptions.    
The assumptions associated with SPLAN include:  

a) test duration is continuous; and 

b) the pattern of failures during the test period is consistent with a NHPP with power law 

mean value function. 

 

5.3.3 Limitations.    
The limitations associated with SPLAN include:  

a) sufficient opportunities for corrective action implementation are required so growth is 

portrayed as a smooth curve;  

b) the expected number of failures needs to be sufficiently large;  

c) the portion of testing utilized for reliability growth planning should be reflective of the 

OMS/MP;  

d) the initial test length must be reasonably small (allowing for reliability growth);  

e) the initial MTBF cannot be specified independent of the length of the initial test phase; 

f) the actual growth test data generated over the test period will typically not satisfy Assumption 

b) if the period contains one or more CAPs which produce a significant jump in MTBF; and 

g) since the demonstrations discussed in this section and in Section 5.4 are based on 

developmental growth test data, the TR to be demonstrated with statistical confidence may be 

more reflective of a hardware/software MTBF than an operational MTBF.  The TR will be 

reflective of an operational MTBF only to the extent that the developmental test period allows 

potential operational and maintenance based failure modes to occur at rates comparable to 

those that would occur under tactical use conditions. 

 

5.3.4  Benefits.    
The benefits associated with SPLAN include: 

a) allows for generation of a target idealized growth curve;  
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b) can specify desired probability of achieving the TR with confidence; and  

c) can aid in planning to utilize system growth test data to demonstrate with statistical 

confidence a stated MTBF value prior to entering an operational demonstration test. 

 

5.3.5  Planning Factors.   
The initial condition planning factors include the following: the test time over the initial test 

phase before implementation of corrective actions, tI; the initial average MTBF, MI; the 

Management Strategy, MS; and the probability of observing at least 1 correctable or B-mode 

failure, Prob, where three of the conditions or factors are chosen and the fourth is determined.  

Prob is given by the following equation: 

 Prob = 1 − e
− 

tI ∗MS

M I
 
 

 

As a general rule, the initial time period, tI, should be at least approximately three times greater 

than the ratio of MI to MS to ensure a high probability, say 0.95, of surfacing at least one B-mode 

failure by the end of tI.  As discussed earlier, this choice of tI may not be sufficiently long and 

may need to extend over the whole first test phase to ensure that after tI, one can assume the 

AMSAA Crow growth pattern applies.  Although this pattern does not apply over the first test 

phase, the presented OC curve analysis for reliability growth implicitly assumes this pattern 

holds over the whole time interval that is associated with the planning curve. 

 

5.3.6 Reliability Growth OC Curve Analysis.   
In the presence of reliability growth, observing c or fewer failures is not equivalent to 

demonstrating the TR at a given confidence level.  Both the cumulative times to failure and the 

number of failures must be considered when using reliability growth test data to demonstrate the 

TR at a specified confidence level, .  Thus, the "acceptance" or "passing" criterion must be 

stated directly in terms of the   LCB on M(T) calculated from the reliability growth data.  This 

data will be denoted by (n, s), where n is the number of failures occurring in the growth test of 

duration T, and s =  t1, t2, … , tn  is the vector of cumulative failure times.  In particular, it  

denotes the cumulative test time to the 
thi  failure and 0< 1t  < 2t ......< nt T  for 1n .  The 

random vector (N, S) takes on values (n, s) for 1n .   

 

Following notation from the previous section, the definition of our acceptance criterion is given 

by the inequality 

TR ≤ lγ n, s  

 

where lγ n, s  is the  statistical LCB on M(T), calculated for 1n .  Thus, the probability of 

acceptance is given by 

Prob  TR ≤ Lγ N, S   

where the random variable  SNL ,  takes on the value lγ n, s  when (N, S) takes on the value 

(n, s). 

 

The distribution of (N, S), and hence that of L (N, S), is completely determined by the test 

duration, T,  together with any set of parameters that define a unique reliability growth curve  
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Thus, the value of  the above probability expression also depends on T and the assumed 

underlying growth curve parameters.  One such set of parameters is It , IM , and , together with 

T.  In this growth curve representation, It  may be arbitrarily chosen subject to 0 < It
 < T.  

Alternately, scale parameter  > 0 and growth rate , together with T, can be used to define the 

growth curve by the equation 

M t =
1

ω βtβ−1 
,    0 < 𝑡 ≤ 𝑇 

 

where  1 .  Note that by the above equation, 

1

ω
=  M T  βTβ−1 

                             

Thus, the growth curve can also be expressed as, 

M t =  M T   
t

T
 
α

,   0 < 𝑡 ≤ 𝑇. 

 

 

Thus it can be seen that the distribution of (N, S), and hence that of L (N, S), is determined by 

(, T, M(T)).  

 

The Type II or consumer (Government) risk for M(T)= TR is at most 1- (for any  < 1 and T > 

0), analogous to the case in the previous section, i.e.,  

Type II = Prob  TR ≤ Lγ N, S  ≤ 1 − γ 

 

for any  < 1 and T > 0, provided M(T) = TR. 

 

To emphasize the functional dependence of the probability of acceptance on the underlying true 

growth curve parameters (, T, M(T)), this probability is denoted by Prob (A; , T, M(T)).  Thus, 

 

Prob A; α, T, M T   ∆ Prob TR ≤ Lγ N, S   

 

where the distribution of (N, S), and hence that of L (N, S), is determined by (,T, M(T)).  The 

Prob (A; , T, M(T)) can be shown to only depend on the values of M(T)/TR (or equivalently 

M(T) for known TR) and E(N) [ (Broemm, Ellner and Woodworth Sep 2000)].  The ratio 

M(T)/TR is analogous to the discrimination ratio for a constant configuration reliability 

demonstration test of the type discussed in the previous section.  Note E(N) denotes the expected 

number of failures associated with the growth curve determined by (, T, M(T)).  More 

explicitly: 

 

E N = T   1 − α M T    
 

 As shown in [ (Broemm, Ellner and Woodworth Sep 2000)], 
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Prob A; α, T, M T  =  1 − e−μ −1   Prob 
χ2n

2

zγ2
≥

1

2μd
  

∞

n=1

e−μ  
μn

n!
  

 

 

where   E(N) and d  M(T)/TR.  This equation explicitly shows that the probability of 

acceptance only depends on  and d.  Thus, the probability of acceptance is denoted by  

Prob (A;,d) and 

Type II = Prob A; μ, 1 ≤ 1 − γ 
 

A discrimination ratio chart for the growth case is shown below in Figure 21.  The figure 

presents three curves for demonstrating the TR with a fixed probability of acceptance equal to 

0.50 (as a function of the M(T)/TR ratio and the expected number of failures).  The test duration 

corresponding to a point (x, y) on a confidence curve in Figure 21 can be shown via the above 

formula for E(N) to satisfy the following: 

                  

T = (1 – α) (TR) xy 

 

where  denotes the growth rate parameter for the planning curve, x = E(N) and y = M(T)/TR. 

Note also that 

  

M T =  
MI

1 − α
  

T

tI
 
α

 

 

                                                                     

                                                                       
     

FIGURE 21.   Probability equals 0.50 of demonstrating TR w/% Confidence as a  

function of M(T)/TR and Expected number of failures 

 

By setting the discrimination ratio equal to one in the above expression for the probability of 

acceptance, one can see that the actual value of the consumer (Government) risk solely depends 

on  and is at most 1-.  To consider the producer (contractor) risk, Type I, let G  denote the 

contractor's target or goal growth rate.  This growth rate should be a value the contractor feels he 

can achieve for the growth test.  Let GM  denote the contractor's MTBF goal.  This is the MTBF 

value the contractor plans to achieve at the conclusion of the growth test of duration T.  Thus, if 
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the true growth curve has the parameters G  and GM , then the corresponding producer 

(contractor) risk of not demonstrating the TR at confidence level  (utilizing the generated 

reliability growth test data) is given by, 

Type I = 1 − Prob A; μG , dG  
where 

dG = MG TR  and μG = T   1 − αG MG   

 

If the Type I risk is higher than desired, there are several ways to consider reducing this risk 

while maintaining the Type II risk at or below 1-.  Since Prob (A; G , Gd ) is an increasing 

function of G  and Gd , the Type I risk can be reduced by increasing one or both of these 

quantities, e.g., by increasing T. To further consider how the Type I statistical risk can be 

influenced, we express Gd  and G  in terms of TR, T, G , and the initial conditions ( IM , It ).  

With  = G  and M(T) = GM ,   

MG TR = dG =  
MI

 1 − αG tI
αG TR

  TαG  

 

and 

E N = μG =  tI
αG MI  T1−αG  

 

 

Note for a given requirement TR, initial conditions (MI, tI), and an assumed positive growth rate 

G , the producer (contractor) risk is a decreasing function of T.  These equations can be used to 

solve for a test time T such that the producer (contractor) risk is a specified value.  The 

corresponding consumer (Government) risk will be at most 1- . 

 

The following section contains two examples of an OC analysis for planning a reliability growth 

program.  The first example illustrates the construction of an OC curve for given initial 

conditions (MI, tI) and requirement TR.  The second example illustrates the iterative solution for 

the amount of test time T necessary to achieve a specified producer (contractor) risk, given initial 

conditions (MI, tI) and requirement TR.  These examples use the following equations, 

M T =  
M I

1−α
  

T

tI
 
α

 and E N =
T

 1−α M T 
 

 

The quantities d = M(T)/TR and  = E(N) are then used to obtain an approximation to  

Prob (A;,d). 

 

5.3.7  SPLAN Example 1.    
Suppose we have a system under development that has a technical requirement (TR) of 100 hours 

to be demonstrated with 80 percent confidence using growth test data.  For the developmental 

program, a total of 2800 hours test time (T) at the system level has been predetermined for 

reliability growth purposes.  Based on historical data for similar type systems and on lower level 

testing for the system under development, the initial MTBF, MI, averaged over the first 500 

hours (tI) of system-level testing was expected to be 68 hours.  Using this data, an idealized 
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reliability growth curve was constructed such that if the tracking curve followed along the 

idealized growth curve, the TR of 100 hours would be demonstrated with 80 percent confidence.  

The growth rate,, and the final MTBF, M(T), for the idealized growth curve were 0.23 and 130 

hours, respectively.  The idealized growth curve for this program is depicted below in Figure 22. 

 

 
 

 

FIGURE 22.  Idealized Reliability Growth Curve. 

 

For this example, suppose one wanted to determine the OC curve for the program.  For this, one 

would need to consider alternate idealized growth curves where the M(T) vary but the MI and tI 

remain the same values as those for the program idealized growth curve (i.e., MI = 68 hours and 

tI = 500 hours).  In varying the M(T), this is analogous to considering alternate values of the true 

MTBF for a reliability demonstration test of a fixed configuration system.  For this program, one 

alternate idealized growth curve was determined where M(T) equals the TR, whereas the 

remaining alternate idealized growth curves were determined for different values of the growth 

rate.  These alternate idealized growth curves along with the program idealized growth curve are 

depicted in Figure 23. 
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FIGURE 23.  Program and Alternate Idealized Growth Curves. 

 

For each idealized growth curve, M(T) and the expected number of failures E(N) can be found.  

Using the ratio M(T)/TR and E(N) as entries in the tables contained in (Ellner and Mioduski Aug 

1992),  one can determine (by double linear interpolation) the probability of demonstrating the 

TR with 80 percent confidence.  This probability is actually the probability that the 80 percent 

LCB for M(T) will be greater than or equal to the TR.  These probabilities represent the 

probability of acceptance (P(A)) points on the OC curve for this program which is depicted in 

Figure 24.  The M(T), , E(N), and P(A) for these idealized growth curves are summarized in 

Table II. 

 

TABLE II. Example 1 -  planning data for idealized growth curves. 

M (T)  E (N) P (A) 

100 0.14 32.6 0.15 

120 0.20 29.2 0.37 

130 0.23 28.0 0.48 

139 0.25 26.9 0.58 

163 0.30 24.5 0.77 

191 0.35 22.6 0.90 

226 0.40 20.6 0.96 
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FIGURE 24.  Operating Characteristic (OC) Curve. 

 
From the OC curve, the Type I or producer (contractor) risk is 0.52 (1-0.48), which is based on 

the program idealized growth curve where M(T) = 130.  Note that if the true growth curve were 

the program idealized growth curve, there is still a 0.52 probability of not demonstrating the TR 

with 80 percent confidence.  This occurs even though the true reliability would grow to M(T) = 

130, which is considerably higher than the TR value of 100.  The Type II or consumer 

(Government) risk, which is based on the alternate idealized growth curve where M(T) = TR = 

100, is 0.15.  As indicated on the OC curve, it should be noted that for this developmental 

program to have a producer (contractor) risk of 0.20, the contractor would have to plan on an 

idealized growth curve with M(T) = 167. 

 

5.3.8  SPLAN Example 2.   Consider a system under development that has a technical 

requirement (TR) of 100 hours to be demonstrated with 80 percent confidence, as in Example 1.  

The initial MTBF, MI, over the first 500 hours (tI) of system level testing for this system was 

estimated to be 48 hours, which (again, as in Example 1) was based on historical data for similar 

type systems and on lower level testing for the system under development.  For this 

developmental program, it was assumed that a growth rate,, of 0.30 would be appropriate for 

reliability growth purposes.  For this example, suppose one wants to determine the total amount 

of system level test time, T, such that the Type I or producer (contractor) risk for the program 

idealized reliability growth curve is 0.20 (i.e., the probability of not demonstrating the TR of 100 

hours with 80 percent confidence is 0.20 for the final MTBF value, M(T), obtained from the 

program idealized growth curve).  This probability corresponds to the P(A) point of 0.80 (1-0.20) 

on the OC curve for this program. 

 

To determine the test time T which will satisfy the Type I or producer (contractor) risk of 0.20, 

select an initial value of T and (as in Example 1) find M(T) and the expected number of failures 

E(N).  Again, using the ratio M(T)/TR and E(N) as entries in the tables contained in (Ellner and 
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Mioduski Aug 1992) , one can determine (by double linear interpolation) the probability of 

demonstrating the TR with 80 percent confidence.  An iterative procedure is then applied until 

the P(A) obtained from the table equals the desired 0.80 within some reasonable accuracy.  For 

this example, suppose we selected 3000 hours as our initial estimate of T and obtained the 

following iterative results, shown in Table III: 

 

TABLE III.  Example 2 - planning data using iterative procedure. 

T M(T) E(N) P(A) 

3000 117.4 36.5 <0.412 

4000 128.0 44.6 <0.610 

5000 136.8 52.2 <0.793 

5500 140.8 55.8 0.815 

5400 140.0 55.1 0.804 

5300 139.2 54.4 0.790 

5350 139.6 54.7 0.796 

5375 139.8 54.9 0.800 
 

 

Based on these results, we determine T = 5375 hours to be the required amount of system level 

test time such that the Type I or producer (contractor) risk for the program idealized growth 

curve is 0.20.   
 

5.4 Subsystem Level Planning Model (SSPLAN).   

 

5.4.1   Purpose.    
The purpose of SSPLAN is to develop subsystem reliability idealized curves and associated test 

durations that have the following property:   If each growth subsystem grows along its curve for 

the associated test duration then, with a prescribed probability, the realized subsystem test data 

will demonstrate a stated system MTBF value at a specified statistical confidence level.   

 

As in Section 5.3, the stated system MTBF value to be demonstrated with statistical confidence 

from the subsystem test data will be referred to as the technical requirement and denoted by TR.  

Demonstrating the TR at a specified statistical confidence level provides a measure of assurance 

that the achieved system MTBF meets or exceeds the TR.  Thus the specified confidence level 

will also be referred to as the assurance level.  

 

For the case where the system is modeled solely as one growth subsystem, SSPLAN is simply 

SPLAN.  In this instance, one is only utilizing system level growth test planning parameters.  

These inputs can be used to establish a target SPLAN idealized system level planning curve and 

associated test duration via the analytical formulas presented in Section 5.3.  Alternately, the 

more general SSPLAN simulation procedure discussed in this section can be utilized. 

 

 

5.4.2   Assumptions.    
The assumptions associated with SSPLAN include:  

a) test duration is continuous;  



                                                            MIL-HDBK-189C  

45 

 

b) the system may be represented as a series of independent subsystems; and  

c) for each growth subsystem, the pattern of failures over the test period is in accordance with a 

NHPP with power law mean value function.  The mean value functions may differ among the 

subsystems. 

 

5.4.3 Limitations.     
The limitations associated with SSPLAN include:  

a) sufficient opportunities for implementation of corrective actions for each subsystem are 

required to permit portrayal of subsystem growth as a smooth curve;  

b) the expected number of failures needs to be sufficiently large;  

c) the portion of subsystem testing utilized for reliability growth planning should be reflective 

of the OMS/MP;  

d) problems with subsystem interfaces may not be captured;  

e) the initial test interval length should be reasonably small (allowing for reliability growth);  

f) an average MTBF over the initial test interval should be specified for each subsystem; 

g) assumption c) will typically not be satisfied if a subsystem test period contains one or more 

CAPs which produce a significant jump in the subsystem’s MTBF; and 

h) the system TR MTBF may not be reflective of an operational system MTBF (see Section 

5.3.3 g). 

 

5.4.4 Benefits.    
The benefits associated with SSPLAN include:  

a) allows generation of a target idealized growth curve, based on subsystem growth 

testing;  

b) can specify desired probability of achieving a technical requirement with 

confidence utilizing subsystem growth test data; 

c) can aggregate test duration from common subsystems on system variants under 

test; 

d) can reduce the amount of system level testing; 

e) can reduce or eliminate many failure mechanisms early in the development cycle 

where they may be easier to locate and correct; 

f) can allow for the use of subsystem test data to monitor reliability improvement; 

g) can increase product quality by placing more emphasis on lower level testing; and 

h) can provide management with a strategy for conducting an overall reliability 

growth program. 

 

5.4.5 Planning Factors.   
The factors include both system level and subsystem level values.  The system level planning 

factor is the system technical requirement, TR.  The subsystem planning factors for developing 

the system planning curve include: the subsystem initial test time, tI; the subsystem initial 

MTBF, MI; the Management Strategy, MS; and the probability of observing at least one B-mode 

failure for the subsystem, Prob.  The three strategies or options are:  

a) tI, MI, MS; 

b) tI, MS, Prob; or  

c) MI, MS, Prob. 
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5.4.6 Considerations. 

It is important for the subsystem reliability growth process to adhere as closely as possible to the 

following considerations: 

a) Potential high-risk interfaces need to be identified and addressed through joint subsystem 

testing, 

b) Subsystem usage/test conditions need to be in conformance with the proposed system 

level operational environment as envisioned in the OMS/MP 

c) Failure Definitions/Scoring Criteria (FD/SC) formulated for each subsystem need to be 

consistent with the FD/SC used for system level test evaluation. 

 

5.4.7 Overview of SSPLAN Approach.    
SSPLAN provides the user with a means to develop subsystem testing plans for demonstrating a 

stated system MTBF value prior to system level testing.  In particular, the model is used to 

develop subsystem reliability growth planning curves and associated test times that, with a 

specified probability, support achieving a system MTBF value with a specified confidence level.  

More precisely, a probability is associated with the subsystem MTBFs growing along a set of 

planned growth curves for given subsystem test durations.  This probability is termed the 

probability of acceptance, PA, which is the probability that the system level TR will be 

demonstrated at the specified confidence level.  The complement of PA, 1-PA, is termed the 

producer (contractor) risk, which is the risk of not demonstrating the system TR at the specified 

confidence level when the subsystems are growing along their target growth curves for the 

prescribed test durations.  Note that PA also depends on the fixed MTBF of any non-growth 

subsystem and on the lengths of the demonstration tests on which the non-growth subsystem 

MTBF estimates are based. 

 

 

One of SSPLAN’s primary outputs is the growth subsystem test times.  If the growth subsystems 

were to grow along the planning curves for these test times, then the probability would be PA that 

the subsystem test data demonstrate the system TR at the specified confidence level.  The model 

determines the subsystem test times by using a specified fixed allocation of the combined growth 

subsystem final failure intensities to each of the individual growth subsystems.  

 

As a reliability management tool, the model can serve as a means for prime contractors to 

coordinate/integrate the reliability growth activities of their subcontractors as part of their overall 

strategy in implementing a subsystem reliability test program for their developmental systems. 

 

5.4.8 Methodology. 

The SSPLAN methodology assumes that a system may be represented as a series of 1K  

independent subsystems, as shown in Figure 25.   

 

 
System    =    Subsystem 1    +    ...    +    Subsystem K

 
 

FIGURE 25.  System Architecture. 
 

This means that a failure of any single subsystem results in a system level failure and that a 

failure of a subsystem does not influence (either induce or prevent) the failure of any other 
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subsystem.  SSPLAN allows for a mixture of test data from growth and non-growth subsystems.  

The model assumes that for the growth subsystems, the number of failures occurring over a 

period of test time follows a NHPP with mean value function 

 

    0,,  tttFE    

where E[F(t)] is the expected number of failures by time t,  is the scale parameter, and  is the 

growth (or shape) parameter.  The parameters  and  may vary from subsystem to subsystem 

and will be subscripted by a subsystem index number when required for clarity.  Non-growth 

subsystems are assumed to have constant failure rates. 

 

5.4.8.1 Mathematical Basis for Growth Subsystems. 

The power function shown with the initial conditions (described in this section) provides a 

framework to describe how SSPLAN develops reliability growth curves.  Together, they provide 

a starting point for describing each growth subsystem’s MTBF as a function of the parameters   

and t.  Since it is not convenient to directly work with for planning purposes,  is related to an 

initial or average subsystem MTBF over an initial period of test time.  First, we note that the 

growth parameter,  , is related to the growth rate, , by the following: 

 01    

For planned growth situations,  must be in the interval (0, 1).  The initial conditions for the 

model consist of: 

a. an initial time period, tI  (for example, the amount of planned test time prior to the 

implementation of any corrective actions), and 

b. the initial MTBF, MI , representing the average MTBF over the interval (0, tI] . 

From this, note that 

 0
1

 I

I

I M
M

  

is the average failure intensity over the interval ( 0, tI ].   

 

In addition to using both MI and tI as initial growth subsystem input parameters, the model 

allows a third possible input parameter, MS.  The product (MS)I  is the average failure rate due 

to correctable failure modes over the initial test interval (0, tI]. 

The relationship among these three parameters is addressed in the following discussion. 

 

Since reliability growth occurs when correctable failure modes are surfaced and (successful) 

corrective actions are incorporated, it is desired to have a high probability of observing at least 

one correctable failure by time tI  (a probability of 0.95 is utilized below).  From our 

assumptions, the number of failures that occur over the initial time period tI is Poisson distributed 

with expected value ItI.  Thus 
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Based on this, it is evident that specifying any two of the parameters is sufficient to determine 

the third parameter.  Thus, when using SSPLAN, the user has three options when entering the 

initial conditions for growth subsystems. Caution must be exercised in utilizing the option to 

solve for tI. Even if there is a high probability of observing one or more B-modes by the value of 

tI obtained from this option, it may not be suitable to use.  Such a tI should only be used if a 
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significant amount of growth is expected to occur prior to the start of the next test period. In 

particular, tI should be chosen large enough so that by the start of the test period, after tI, one or 

more corrective actions are expected to be implemented that significantly impacts the 

subsystem’s reliability.       

 

The derivative with respect to time of the expected number of failures function, t

, is 

  1  tt  

The function  t  represents the instantaneous failure intensity at time t.  The reciprocal of 

 t , shown below, is the instantaneous MTBF at time t: 

 
 t

tM


1
  

These equations provide much of the foundation for a discussion of how SSPLAN develops 

reliability growth curves for growth subsystems.  Figure 26 below shows a graphical 

representation of subsystem reliability growth. 

 
 

MTBF 

0 T t t 
I 

M(T) M(t) =  [  t       ] 
  

M I 

 
FIGURE 26.  Subsystem Reliability Growth in SSPLAN. 

 

5.4.8.2 Mathematical Basis for Non-growth Subsystems.  
Based on the constant failure rate assumption, the input parameters that characterize a non-

growth subsystem are its fixed MTBF planning value, M, and the planned length of the 

demonstration test, T, from which the constant MTBF is to be estimated.  If a demonstration test 

is not planned for assessing the MTBF of a non-growth subsystem, then either the inputted non-

growth subsystem MTBF can be treated as ―known‖ in calculating a LCB on the system MTBF 

or can be treated as a statistical estimate based on historical test data generated from a 

demonstration test of length T.  

 

5.4.9 Algorithm for Estimating Probability of Acceptance.     
Rather than using purely analytical methods, SSPLAN uses simulation techniques to estimate the 

probability of achieving a stated system technical requirement with a specified confidence level.  

This estimate of the Probability of Acceptance, PA, is calculated by running the simulation with a 

large number of trials. 
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Using the parameters that have been inputted and calculated at the subsystem level, the model 

generates ―test data‖ for each subsystem for each simulation trial, thereby developing the data 

required to produce an estimate for the failure intensity for each subsystem.  The test intervals 

and estimated failure intensities corresponding to the set of subsystems that comprise the system 

provide the necessary data for each trial of the simulation. 

 

The model then uses a method developed for fixed configuration discrete data (the Lindström-

Madden Method) to ―roll up‖ the subsystem test data to arrive at an estimate for the final system 

reliability at a specified confidence level, namely, a statistical LCB for the final system MTBF.  

In order for the Lindström-Madden method to be able to combine growth subsystem test data and 

handle a mix of test data from both growth and non-growth subsystems, the model first converts 

all growth (G) subsystem test data to an ―equivalent‖ amount of demonstration (D) test time and 

―equivalent‖ number of demonstration failures so that all subsystem results are expressed in 

terms of fixed configuration (non-growth) test data.   By treating growth subsystem test data this 

way, a standard LCB formula for time-truncated demonstration testing may be used to compute 

the system reliability LCB for the combination of ―converted‖ growth and non-growth test data. 

The combination procedure will be addressed later. 

 

For each simulation trial, if the LCB for the final system MTBF meets or exceeds the specified 

system TR, then the trial is termed a success.  An estimate for the probability of acceptance is the 

ratio of the number of successes to the number of trials. 

 

The algorithm for estimating the probability of acceptance is described in greater detail by 

expanding upon the following four topics: 

a. generating ―test data‖ estimates for growth subsystems 

b. generating ―test data‖ estimates for non-growth subsystems 

c. converting growth subsystem data to ―equivalent‖ demonstration data 

d. using the Lindström-Madden method for computing system level statistics 

 

5.4.9.1 Generating Estimates for Growth Subsystems.    
There are two quantities of interest for each growth subsystem for each trial of the simulation -  

a. the total amount of test time,  
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(Determined by rearranging and combining the relationships for (t) and M(t)), and  

 

b. the estimated failure intensity at that time,  iGiG T ,,̂
.
 

The model generates the estimated failure intensity,  iGiG T ,,̂ , by using,  , G,i and t

 with t 

= TG,i to calculate a Poisson distributed random number, 
iGn ,
, which serves as an outcome for 

the number of growth failures during a simulation trial.  SSPLAN uses the realized value of nG,i 

and the corresponding conditional estimate for  , say 𝛽 G,i .  The value 𝛽 G,i  is generated as a 
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random number from the distribution of the MLE 𝛽  conditioned on the realized value of nG,i.  

This conditional distribution of 𝛽  is shown below. 

 
 

2

2

,

,

2
~ˆ

iGn

iGn




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  (Broemm, Ellner and Woodworth Sep 2000)

 

 

Next, an estimate for the failure intensity, ρ G,i TG,i , is obtained for each growth subsystem for 

each trial of the simulation. This is done via the formula estimate of  i
th

 subsystem failure 

intensity at TG,i which equals (𝛽 G,i∙nG,i)/TG,i. Note the same value for TG,i is used on all the 

simulation trials.

 

5.4.9.2 Generating Estimates for Non-growth Subsystems.    
There are two quantities of interest for each non-growth subsystem for each trial of the 

simulation - 

a) the total amount of test time, Tn,i , and 

b) the estimated failure intensity,  iDiD T ,,̂ . 

Tn,i  is the length of the demonstration test on which the non-growth subsystem MTBF estimate 

is based.  For each non-growth subsystem, to obtain the estimated failure intensity,  iDiD T ,,̂ , the 

model first calculates the expected number of failures, TD,i / MD,i. The expected number of 

failures is then used as an input parameter (representing the mean of a Poisson distribution) to a 

routine that calculates a Poisson distributed random number, 
iDn ,
, which is an outcome for the 

number of failures in a demonstration test during a simulation trial.  An estimate for the failure 

intensity follows: 

 
iD

iD

iDiD
T

n
T
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,

,,
ˆ   

 

5.4.9.3 Converting Growth Subsystem Data to “Equivalent” Demonstration Data.   
There are two equivalency relationships that must be maintained for the approach to be valid, 

namely, the demonstration data and the growth data must yield: 

a. The same subsystem MTBF point estimate: 

iGiD MM ,,
ˆˆ   

b. And the same subsystem MTBF lower bound at a specified confidence level : 

 ,,,, iGiD LCBLCB   

Starting with the left side of the second equivalency relationship, the LCB formula for time-

truncated demonstration testing is: 

2

,22

,

,,

,

2




 



iDn

iD

iD

T
LCB  

Where TD,i  is the demonstration test time, 
iDn ,
 is the demonstration number of failures,   is the 

specified confidence level and 2

,22 ,  iDn
 is a chi-squared 100  percentile point with 22 , iDn  

degrees of freedom.  Using an approximation equation developed by Crow (Broemm, Ellner and 

Woodworth Sep 2000), the LCB formula for growth testing (the right side of the LCB 

relationship) is: 
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where 
iGn ,
 is the number of growth failures during the growth test, 

iGM ,
ˆ  is the MLE for the 

MTBF and 2

,2,  iGn
 is a chi-squared 100 percentile point with 2, iGn  degrees of freedom. 

On equating, separately, the numerator and denominator, the equivalent demonstration data are 

found as  

nD,i =
nG,i

2
 

and 

TD,i =
TG,i

2β 
 

 

which SSPLAN uses in converting growth subsystem data to equivalent demonstration data. 

 

5.4.9.4 Using the Lindström-Madden Method for Computing System Level Statistics.   

The Lindström-Madden Method is a method for computing the LCB for system reliability when 

there are two or more subsystems in series.  A continuous version of the Lindström-Madden 

method for discrete subsystems is used to compute an approximate LCB for the final system 

MTBF from subsystem demonstration (non-growth) and ―equivalent‖ demonstration (converted 

growth) data.  The Lindström-Madden method typically generates a conservative LCB, which is 

to say the actual confidence level of the LCB is at least the specified level.  It computes the 

following four estimates in order: 

a. The equivalent amount of system level demonstration test time.  (Since this 

estimate is the minimum demonstration test time of all the subsystems, it is 

constrained by the least tested subsystem.) 

b. The estimate of the final system failure intensity, which is the sum of the 

estimated final growth subsystem failure intensities and non-growth subsystem 

failure rates 

c. The equivalent number of system level demonstration failures, which is the 

product of the previous two estimates. 

d. The approximate LCB for the final system MTBF at a given confidence level, 

which is a function of the equivalent amount of system level demonstration test 

time and the equivalent number of system level demonstration failures. 

 

In equation form, these system level estimates are, respectively: 

iDSYSD TT ,, min for i = 1…K  





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iD

i
M ,
ˆ

1
ˆ   and iDM ,

ˆ  the demonstration or equivalent demonstration MTBF estimate for 

subsystem i. 
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5.4.9.5 Methodology for a Fixed Allocation of Subsystem Failure Intensities.   

Let G,SYS  denote the sum of all the growth subsystem failure intensities at the conclusion of the 

subsystem growth tests.  The methodology utilizes a fixed allocation, ai, of G,SYS to each growth 

subsystem i.  Thus G,i (TG,i)  = aiG,SYS.  For this allocation, SSPLAN first determines if a 

solution exists that satisfies the criteria given by the user during the input phase.  Specifically, 

SSPLAN checks to see if the desired probability of acceptance can be achieved with the given 

failure intensity allocations and maximum subsystem test times.  If a solution does exist, 

SSPLAN will proceed to find the solution that meets the desired probability of acceptance within 

a small positive number epsilon. 

 

5.4.9.5.1 Determining the Existence of a Solution.     
To determine if a solution is possible, SSPLAN calculates the maximum possible MTBF for 

each subsystem.  The maximum subsystem MTBF is multiplied by its failure intensity allocation 

to determine its influence on the system MTBF.  For example, if a subsystem can grow to a 

maximum MTBF of 1000 hours and it has a failure intensity allocation of 0.5 (that is, its final 

failure intensity accounts for half of the total final failure intensity due to all of the growth 

subsystems), then that particular subsystem will limit the combined growth subsystem maximum 

MTBF to 500 hours.  In other words, the maximum MTBF to which the growth portion of the 

system can grow   is the minimum of the products (subsystem final MTBF multiplied by the 

subsystem failure intensity allocation) from among all the growth subsystems.  The probability 

of acceptance, PA, is then estimated using 
sysGMTBF ,

.  If the estimated PA is less than the desired 

PA, then no solution is possible within the limits of estimation precision for PA, and SSPLAN 

will stop with a message to that effect. 

 

5.4.9.5.2 Finding the Solution.     
On the other hand, if the estimated PA is greater than or equal to the desired PA, then a solution 

exists.  If, by chance, the desired PA has been met (within a small number epsilon) then SSPLAN 

will use 
sysGMTBF ,

 as its solution.  It is more likely, however, that the estimate corresponding to 

sysGMTBF ,  
exceeds the requirement, meaning that the program resulting in sysGMTBF ,  contains 

more testing than is necessary to achieve the desired PA.  SSPLAN proceeds, then, to find a value 

for sysGMTBF ,  that meets the desired PA within epsilon. 

 

5.4.10 SSPLAN Example.   
The following is a successfully implemented subsystem reliability growth planning approach 

using SSPLAN.  The objective is to develop a system planning curve utilizing subsystem level 

data to address the conduct of trade-off analysis between Entry into Service (EIS) calendar date 

and EIS expected reliability.  It was felt that system reliability measurements start too late in the 

development cycle, thus, SSPLAN provided an approach making use of subsystem level data to 

begin the measurement process earlier in development.  Key objectives were to predict reliability 

maturation and govern reliability growth issues from day one utilizing a coordinated subsystem 

growth strategy. (Chenard, Ellner and J.-L. 2007) (Chenard, Peree and Ellner 2006) 

 

System level inputs include the system TR to be demonstrated with confidence from the 

subsystem data, statistical confidence level for the LCB on achieved system MTBF, and the 

specified probability p0 that the desired assurance level would be realized under the growth 

M 
G sys , 
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assumption.  The system level output is the system target, Mtarg, sys; note that Mtarg, sys> TR, since 

one wants a reasonable probability that the gamma (the desired confidence or assurance level) 

LCB on the achieved system MTBF will be at least the system TR (referred to as the system 

MTBF goal or objective in the following references). (Chenard, Ellner and J.-L. 2007) (Chenard, 

Peree and Ellner 2006) (Broemm, Ellner and Woodworth Sep 2000) 

 

Growth subsystem inputs include growth rate, initial test period t1,i , average MTBF expected 

over the initial test period, allocation fraction, ai, of growth subsystem portion of target system 

failure intensity contributed by growth subsystem i, and maximum subsystem test duration.  

Subsystem outputs include: subsystem i test duration, target MTBF for subsystem i, and 

expected number of subsystem failures in test. 

 

The following is an outline of the procedure to obtain subsystem test durations (all subsystems 

are growth subsystems). 

 Ni(t) is a NHPP with rate of occurrence function i(t) 

o i(t)=it
i

where i=1-i and i=t1,i
i

 /M1,i for growth subsystem i 

 Steps 

o Use trial value Mtarg, sys to calculate targ, i = ai·targ, sys 

o Obtain trial value Ti by inverting equation targ, i = i(Ti) 

o For each growth subsystem i simulate NHPP from 0 to Ti 

o Calculate pseudo demonstration test number of failures nD, i = nG,i/2 and TD, i 

=Ti/(2est, i) 

 est, i is the maximum likelihood estimate of i from simulated growth test 

data 

 Equate point estimate and LCB on Mtarg, i from pseudo demonstration data 

to estimates from growth data to obtain pseudo demonstration test data 

o Combine subsystem pseudo demonstration data to obtain approximate LCB on 

Mtarg, sys  

 SSPLAN applies the Lindström-Madden method adapted for continuous 

test duration 

 Could use other methods for combining pseudo demonstration test data 

o Repeat last 3 steps prescribed number of times to estimate Prob (LCB≥TR) 

o If estimated probability is close to p0 stop – the current trial Ti values are chosen 

as the subsystem test durations; otherwise adjust Mtarg, sys and repeat above steps 

 

Table IV contains the inputs and outputs for this example.  
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TABLE IV. Inputs and outputs for SSPLAN application 

 

MTBF 

TR 
Confidence 

Level 
PA 

Number of 

Subsystems 

19.08 0.7 0.7 14 

 

Subsystems G/N α 
Initial 

MTBF 

Initial 

Time 

Maximum 

Test Time 

Failure 

Allocation 

Expected 

Failures 

Total 

Test 

Time 

Final 

MTBF 

S 1  Growth 0.44 1558 4673 900000 0.0027 11.81 54033 8168 

S 2  Growth 0.32 56 169 300000 0.0755 44.48 8835 292 

S 3  Growth 0.34 95 336 80000 0.0447 38.65 12586 493 

S 4  Growth 0.34 31 120 20000 0.1393 40.95 4279 158 

S 5  Growth 0.33 53 159 16000 0.0803 37.55 6910 275 

S 6  Growth 0.33 169 505 70000 0.0253 37.05 21641 872 

S 7  Growth 0.33 79 286 200000 0.054 45.1 12341 408 

S 8  Growth 0.35 30 109 40000 0.1434 33.97 3396 154 

S 9  Growth 0.36 19 70 25000 0.2248 30.85 1937 98 

S 10  Growth 0.34 71 214 19000 0.0597 33.06 8059 369 

S 11  Growth 0.46 2893 8678 7500000 0.0015 9.81 77904 14703 

S 12  Growth 0.34 37 112 11000 0.1142 33.4 4257 193 

S 13 Growth 0.33 135 405 64000 0.0316 37.37 17476 698 

S 14 Growth 0.43 1396 4189 95000 0.003 12.88 53981 7351 

 

Option Epsilon 
Number of 

Iterations 

Computed 

PA 

Computed 

Target MTBF 

Enter the allocation of failure 

intensities among subsystems 
0.01 500 0.7 22.05 

 

 

 

5.5  Planning Model Based on Projection Methodology (PM2)-Continuous. 

 

5.5.1 Purpose.   
The purpose of PM2 Continuous is to develop a system-level reliability growth planning curve 

that incorporates the developmental test schedule and corrective action strategy.  The planning 

curve and associated steps serve as a baseline which reliability assessments may be compared 

against, possibly highlighting the need for reallocation of resources. 

 

Unlike the AMSAA Crow Planning Model, the PM2 Continuous model does not have a growth 

rate parameter, nor is there a comparable quantity.  Furthermore, PM2 Continuous utilizes 

planning parameters that are directly influenced by program management, which include:  

a) MI , the planned initial system MTBF;  

b) MS, the Management Strategy, which is the fraction of the initial failure rate addressable 

via corrective action;  
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c) MG, the MTBF goal for the system to achieve at the conclusion of the reliability growth 

test;  

d) d, the planned average FEF of corrective actions;  

e) T, the duration of developmental testing; and  

f) the average lag time associated with corrective actions.   

 

5.5.2 Assumptions.   
The assumptions associated with PM2 Continuous include:   

a) Initial B-mode failure rates 1,…, k constitute a realization of an independent random 

sample k such that i ~ gamma  α, β  for each i = 1,…, k where the density 

function is:    

f∧ λ =
λαe

−
λ
β

α! βα+1
 

 

As a rule of thumb, the potential number of B-modes should be at least five times the number of 

B-modes that are expected to be surfaced during the planned test period.  

 

This assumption models mode-to-mode variation with respect to the initial B-mode rates of 

occurrence.  The assumption for complex systems (i.e., for large k) also gives rise to the form of 

the function utilized in PM2 Continuous for the number of B-modes that are expected to be 

surfaced in t test hours.  The functional form is reflective of the modeled B-mode initial failure 

rate variation.  This same functional form can be arrived at without this assumption.  For one 

such alternate approach that leads to this functional form, see reference (Ellner and Hall Mar 

2006). 

  

b) B- mode first occurrence times t1,….., tk  constitute a realization of an independent 

distributed random sample T1,…..Tk such that Ti ~ Exponential  λi  for each i = 1,….,k;  

c) Each failure mode occurs independently and causes system failure; and 

d) Corrective actions do not create new failure modes. 

 

5.5.3 Limitations.    
The limitations associated with PM2 Continuous include:  

a) The portion of testing utilized for reliability growth planning should be reflective of the 

OMS/MP;   

b) Need to have a realistic test schedule that determines the number of test hours per vehicle 

per month over the planned testing period; and  

c) Need to have CAPs specified within the planned test schedule. 

 

5.5.4 Benefits.   
The benefits associated with PM2 Continuous include:  

a) can determine the impact of changes to the planned test schedule and associated CAPs;   

b) measures of programmatic risk are not sensitive to the length of the initial test phase 

(which is a limitation of the AMSAA Crow Planning Model); 

c) can use different average corrective action lag time for each test phase; 

d) provides an MTBF target to track against;   
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e) can be applied to programs with limited opportunities for implementation of corrective 

actions; and 

f) utilizes planning parameters that are directly influenced by program management. 

 

5.5.5 Overview of PM2 Continuous Approach. 

PM2 Continuous reliability growth planning curves primarily consist of two components – an 

idealized curve, and MTBF targets for each test phase.  

  

5.5.5.1 The Idealized Curve. 

The idealized curve may be interpreted as the expected system MTBF at test time t ∈  0, T  that 

would be achieved if all B-modes surfaced by t were implemented with the planned average 

FEF.  The idealized curve extends from the initial MTBF, MI, to the goal MTBF, MG ,where MG 

is greater than the MTBF requirement, MR.  By using an Operating Characteristic (OC) Curve 

which incorporates consumer (Government) and producer (contractor) risks, the MTBF MR
+
 is 

calculated as the MTBF needed when entering the IOT&E demonstration test.  Then, MG is the 

goal MTBF needed at the end of DT and is determined by applying a DT-to-OT reliability 

degradation factor to MR
+
.  Therefore, the relationship between these MTBF values is as follows:  

MG  > MR+ > MR.  The idealized curve is a monotonically increasing function whose rate of 

increase depends on a few important assumptions.  These assumptions include the levels of MS, 

the average Fix Effectiveness Factor, d, and the initial and goal MTBFs used to generate the 

curve.   

 

MS is defined as, 

 

MS =
λB

λA + λB
 whose estimate is

NB

NA + NB
 only if all fixes are delayed to T. 

In the definition of MS, B and A represent the portion of the initial system failure intensity that 

program management will and will not address via corrective action, respectively.  Note that the 

initial failure intensity λI ≡ MI
−1 = λA + λB .  Notice that MS does not represent, in general, the 

fraction of corrected failures or modes (which is a common misconception).  In the equation 

above, NA and NB are the number of A-mode failures and B-mode failures observed, respectively. 

 

5.5.5.2 MTBF Targets. 

The second component of the PM2 Continuous planning curve includes a sequence of MTBF 

steps.  Since failure modes are not found and corrected instantaneously during testing, PM2 

Continuous uses a series of MTBF targets to represent the actual (constant configuration) MTBF 

goals for the system during each test phase throughout the test program.  The rate of increase in 

the MTBF targets depends on the planning parameters used, and are conditioned explicitly on 

scheduled CAPs.  Unlike the AMSAA Crow Planning Model, the MTBF targets are not 

computed merely as arithmetic averages of the idealized curve.   

 

5.5.6 Equations and Metrics. 

Both the idealized curve and the MTBF targets are generated by the same equation, namely, the 

expected system failure intensity at test time t ∈  0, T  denoted by ρ t  , where 

 

ρ t ≡ λA +  1 − μd ∙  λB − h t  + h t  
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In this equation, (t) represents the expected system failure intensity at test time t ∈  0, T  if 
corrective actions to all B-modes surfaced by t are implemented with an average FEF equal to d.  

Also note that 

 

λA ≡  1 − MS ∙ λI ≡
 1 − MS 

MI
 

and 

  λB ≡  MS ∙ λI ≡
 MS 

MI
. 

 

 

Under the model assumptions, the rate of occurrence of new B-modes at test time t for complex 

systems can be well approximated by the following expression:  

 

h t ≡
λB

1 + β ∙ t
 

where  β is a scale parameter that arises from the gamma distribution scale parameter.  This 

parameter solely determines the fraction of h(0) that is due to B-modes surfaced by test time t. 

For complex systems, the β utilized for planning purposes in the above h(t) formula can be  

expressed solely in terms of growth planning parameters as follows:    
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Note that the following planning parameters (which must be tailored on a system-specific basis) 

are inputs to PM2 Continuous: 

a) MI , the planned initial system MTBF;  

b) MS, the Management Strategy, which is the fraction of the initial failure rate addressable 

via corrective action;  

c) MR, the requirement MTBF 

d) Confidence level to demonstrate MR (i.e. one minus consumer risk) 

e) Probability of demonstrating MR at confidence level (i.e. one minus producer risk)  

f) d, the planned average FEF of corrective actions;  

g) T, the duration of developmental testing; 

h) IOT&E test length; 

i) the test phase lag times due to corrective action implementation; and  

j) the degradation factor due to transition from a DT to an OT environment.   

 

5.5.6.1 Expected Number of B-Modes.   
This metric gives management an indication of the number of potential engineering redesigns 

that may be required.  This is important to consider in determining the amount of resources 
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needed (e.g. time, personnel and funding).  The PM2 Continuous equation for the expected 

number of B-modes at test time t is given by 

 

μ t ≡  
λB

β
 ∙ ln 1 + β ∙ t  

 

5.5.6.2 Expected Rate of Occurrence of New B-modes.   

The rate of occurrence of new B-modes at test time t ∈  0, T , h(t), is mathematically equivalent 

to the expected failure intensity due to unobserved B-modes (sometimes referred to as latent 

failure modes).  This metric may be used as a measure of programmatic risk.  For example, as 

the development effort is ongoing, one would like the estimate of h(t)→0.  This condition 

indicates that program management has observed the dominant B-modes in the system.  

Conversely, large values of h(t) indicate higher programmatic risk of observing additional 

unseen B-modes inherent to the current system design.  Thus, effective management and goal-

setting of h(t) is a good practice. 

 

5.5.6.3 Fraction Surfaced of the Expected Initial B-mode Failure Intensity.    
For complex systems, the portion of the expected initial B-mode failure intensity associated with 

B-modes observed, i.e. exposed, by test time t ∈  0, T  can be expressed as 

θ t ≡
β ∙ t

1 + β ∙ t
 

where  is computed in terms of planning parameters (as previously shown ).   Thus, it is natural 

to refer to θ t as the exposure function and to β as the exposure parameter.  Note that program 

management can eliminate at most the fraction θ t  from the initial B-mode failure intensity of 

the system (if only B-modes surfaced in the growth test by t are addressed) regardless of when 

corrective actions are implemented, or how effective those corrective actions may be.  For 

instance, say management is currently aware of 20 B-modes in a system.  The question is: do 

those 20 B-modes constitute 9 percent of the initial B-mode failure intensity, or 90 percent?  

Thus, small values of θ t indicate that further testing is required to find and effectively correct 

additional B-modes.  Conversely, large values of θ t  indicate that further pursuit of the 

development effort may not be economically justifiable (i.e., the cost may not be worth the 

potential gains).  Thus, this metric may be utilized as a measure of system maturity since it 

quantifies the fraction of the system B-mode failure intensity that program management can 

impact via corrective action efforts. 

 

5.5.6.4 Reliability Growth Potential.    
Reliability Growth Potential MTBF, MGP, is the theoretical upper limit on the reliability of a 

system that is achieved by finding and mitigating all B-modes at a specified level of fix 

effectiveness.  It is defined by  

MGP ≡ lim
t→∞

ρ−1 (t) =
MI

1 − MS ∙ μ
 

Note that the growth potential only depends on three quantities:  

a) MI, the initial MTBF of the system;  

b) MS, the portion of the initial failure intensity that is addressed; and  

c) d, how effectively failure modes are mitigated.  
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As a rule of thumb, the ratio of the MTBF target, MG, to MGP should be between 0.6 and 0.8 for a 

well managed, but not overly aggressive reliability growth program.  

 

 

 

The planning parameters MI, MG, d, and MS are termed logically consistent provided MG < MGP, 

i.e., 
MG

MI
<

1

1 − (MS) ∙ μd
 

  

The complex system planning formula for β can be written in terms of MGP.  One can show, 





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 For a logically consistent set of reliability growth planning parameters, one must have MI < MG 

< MGP.  Note that this ensures that  𝛽 > 0. 

 

5.5.7 Plausibility Metrics for Planning Parameters.  
If T is chosen to be unrealistically small for growing from MI to MG, then the resulting value of β 

will be unduly large.  This would be reflected in the function 

 
t

t
t











1
 

rising towards one at an unrealistic rate.  For example, a large β could imply that   80.00 t  for 

an initial time segment  0,0 t  for which past experience indicates it would not be feasible to 

surface a set of B-modes that accounted for 80% of the initial B-mode failure intensity. In fact, 

(t0) can be calculated to see what the choice of T implies with regard to the expected number of 

B-modes that account for (t0). The smaller T is chosen, the larger β will be and the smaller (t0) 

will be, holding all the other planning parameters fixed. At some point, as T is reduced, the 

implied number of B-modes to obtain a given value of (t0), such as 0.80, should be judged to be 

unrealistically small based on past experience. An unrealistically large β, and corresponding  t  

function, could also arise by choosing MG to be an excessively high percentage of MGP.   

 

A second potentially useful metric for judging whether the planning parameters give rise to a 

reasonable value for β is the implied average B-mode failure rate for the expected set of surfaced 

B-modes over a selected initial reference test period  0,0 t . This is easily calculated as the quantity 

λB minus h(t0), divided by (t0), and solely depends on t0 and β.  

 

A third potentially useful metric to judge the reasonableness of the planning parameters is the 

expected number of unique B-modes surfaced over an initial test interval  0,0 t  they imply.  Prior 

experience with similar developmental programs or initial data from the current program can 

serve as benchmarks. 
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5.5.8  PM2 Continuous Example.  
Once the planning parameters are chosen, the approximation for the idealized expected failure 

intensity, denoted by (t) above, can be used to generate a detailed reliability growth planning 

curve.  For example, suppose a test schedule is laid out that gives the planned number of RAM 

miles accumulated on the units under test per month.  Suppose the test schedule specifies blocks 

of calendar time for implementing corrective actions.  For planning purposes, assume that in 

order for a failure mode to be addressed in an upcoming CAP, it must occur four months prior to 

the start of the period (one could use different calendar lag times for each test phase if desired).  

For this situation, the MTBF could be represented by a constant value between the ends of CAPs 

and between the start of testing and the end of the first scheduled CAP.  For such a test plan, 

jumps in MTBF would be portrayed at the conclusion of each CAP.  The increased MTBF after 

the jump is given by M ti =  ρ ti  
−1, where ti denotes the accumulated test time from the 

calendar date that occurs four months prior to the start of the thi  CAP.  In such a manner, a 

sequence of target MTBF steps would be generated that grow from the initial MTBF value to a 

goal MTBF value. 

 

Figure 27 below depicts a detailed reliability growth planning curve for a complex system for the 

case where A and B failure mode categories are utilized.  The MTBF requirement for the system 

to demonstrate during IOT&E is MR = 65 hours.  IOT&E is an operational demonstration test of 

the system’s suitability for fielding.  Such a test is mandated by public law for major DoD 

developmental systems.  In such a demonstration test, it may be required to demonstrate MR with 

a measure of assurance.  In this example, the measure of assurance is to demonstrate MR at the 

80% statistical confidence level.   

 

 FIGURE 27.  PM2 Reliability Growth Planning Curve. 

 

Assumes 4 Month Corrective Action 
Lag before CAP 

 

 

CAP 2 
 

CAP 1 
 

CAP = Correction Action Period 
M = MTBF 
MG = Goal MTBF 
MI = Initial MTBF 
Box at end of curve indicates all 
corrective actions incorporated. 
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The blue curve represents M(t)={(t)}
-1

.  Note the value M(t) is the system MTBF one expects to 

obtain once all corrective actions to B-modes surfaced during test period [0,t] are implemented.  

The MTBF steps are constructed from the blue curve, the schedule of CAPs, and the assumed 

calendar average corrective action implementation lag together with the test schedule.  Note that 

the Developmental Test (DT) goal MTBF, MG, was chosen to be larger than MR = 65 hours, the 

MTBF to be demonstrated during IOT&E.  To have a reasonable probability of demonstrating 

MR with 80% confidence, the system must enter IOT&E with an operational MTBF value of 

R
M , 

which is greater than MR.  Calculating 

R
M  can be accomplished from the IOT&E test length, the 

desired confidence level of the statistical demonstration, and the specified probability of being 

able to achieve the statistical demonstration.  (See OC curve). After determining 

R
M , one can 

consider what the developmental goal MTBF, MG , should be at the conclusion of the 

development test.  The value of MG should be the goal MTBF to be attained just prior to the 

IOT&E training period that precedes  IOT&E.  The goal MTBF, MG, associated with the 

development test environment, must be chosen sufficiently above 

R
M  so that the operational test 

environment (associated with IOT&E) does not cause the reliability of the test units to fall below 


R
M  during IOT&E.  The significant drop (degradation) in MTBF that often occurs when 

transitioning from a DT to an OT environment could be attributable to operational failure modes 

that were not encountered during DT.  On our example, a degradation factor of 10% was used to 

obtain MG from 

R
M  (

90.0



 R
G

M
M ).  

 

Figure 28 illustrates the reliability growth planning curve in terms of calendar time and the step 

function growth pattern as corrective actions are incorporated at planned times in the test 

program.  
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FIGURE 28.  PM2 Reliability Growth Planning Curve in Calendar Time 

 

 

The depiction of growth in Figures 27 and 28 do not preclude the possibility that some fixes may 

be implemented outside of the CAPs (i.e., during a test phase). These would typically be fixes to 

maintenance or operational procedures, or may include easily diagnosed and implemented design 

changes to hardware or software.  If fixes are expected to be applied during a test phase, then a 

portion of the jump in MTBF (or drop in system failure intensity) portrayed in the figures at the 

conclusion of a test phase CAP would be realized during the test phase (prior to the associated 

CAP).   

 

However, the majority of the reliability growth would typically be expected to occur due to 

groups of fixes that are scheduled for implementation in CAPs.  These would include fixes 

whose implementation would involve intrusive physical procedures.  For planning purposes, 

each test phase step in Figures 27 and 28 simply portrays the test phase MTBF that would be 

expected if no fixes were implemented during the test phase.  

 

 

5.6  Planning Model Based on Projection Methodology (PM2)-Discrete.    

 

5.6.1 Purpose.  
PM2-Discrete is a planning model that possesses measures of programmatic risk and 

system maturity. 

 

 
CAP = Correction Action Periods 
M = MTBF 
MG = Goal MTBF 
MI = Initial MTBF 

Box at end of curve indicates all 
corrective actions incorporated. 

CAP1 

CAP2 

CAP3 
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PM2-Discrete is the first methodology specifically developed for discrete systems and is 

also the first quantitative method available for formulating detailed plans in the discrete 

usage domain.  The model has the same conditions of use as the continuous PM2 model, 

except for the usage domain. 

 

PM2-Discrete utilizes planning parameters that are directly influenced by program 

management, which include:  

a) RI, the planned initial system reliability;  

b) MS, the Management Strategy, which in the discrete case is a value between 0 and 1 

that decomposes RI into the factors RA and RB (which are defined below);  

c) RG, the goal reliability for the system to achieve at the conclusion of the reliability 

growth test;  

d) d, the planned average FEF of corrective actions;  

e) T, the duration of developmental testing; and  

f) average delay associated with corrective actions.   

   

5.6.2  Assumptions.   

The assumptions associated with PM2-Discrete include: 

a) Initial B-failure mode probabilities of occurrence 1, , kp p  constitute a realization of 

an independent and identically distributed (iid) random sample 1, , kP P  such that 

 ~ ,iP Beta n x  for each 1, ,i k , with Probability Density Function (PDF) 

parameterization 

 

 

   
   

11 1 0,1

0 otherwise

n xx

i i i

i

n
p p p

f p x n x

 
 

   
   



    

With the shape parameters n  and x  where   1

0

x tx t e dt


     is the Euler gamma 

function.  The associated mean, and variance of the iP  are given respectively by, 

 i

x
E P

n


 

and 

 
 

 2 1
i

x n x
Var P

n n

 


 
 

b) The number of trials 1, , kt t  until B-failure mode first occurrence constitutes a 

realization of a random sample 1, , kT T  such that  ~i iT Geometric p  for each 

1, ,i k . 

c) Potential failure modes occur independently and cause a system failure. 

d) Corrective actions do not create new failure modes. 
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5.6.3 Limitations. 

The limitations associated with PM2-Discrete include: 

a) The portion of testing utilized for reliability growth planning should be reflective of the 

OMS/MP;   

b) Need to have a realistic test schedule that determines the number of trials planned over 

the test period; and  

c) Need to have CAPs specified within the planned test schedule. 

 

5.6.4 Benefits. 

The benefits associated with PM2-Discrete include: 

a) PM2-Discrete can determine the impact of changes to the planned test schedule and 

associated CAPs.   

b) PM2-Discrete can use different average corrective action delay periods for each test 

phase. 

c) PM2-Discrete provides a reliability target to track against.   

d) PM2-Discrete can be applied to programs with limited opportunities for implementation 

of corrective actions. 

e) PM2-Discrete offers several reliability growth management metrics of basic interest 

including: 

i. Expected number of failure modes observed through trial t; 

ii. Expected reliability on trial t under instantaneous failure mode mitigation; 

iii. Expected reliability growth potential; 

iv. Expected probability of failure on trial t due to a new B-mode; and 

v. Expected probability of failure on trial t due to a repeat B-mode expressed as a 

fraction of the initial B-mode probability of failure in the absence of failure mode 

mitigation. 

 

5.6.5  Equations and Metrics. 

 

5.6.5.1 Expected Reliability.    
The idealized curve for PM2-Discrete is generated by plotting the expected reliability on trial t 

(under instantaneous failure mode mitigation) versus trials.  This expression is given by, 

 














 1

1
1

tn

t

BA

d

RRtR


 

where 

  0,1AR   is the initial system probability that an A-mode does not occur on a trial.  

  0,1BR   is the initial system probability that a B-mode does not occur on a trial.  

 μd ∈ (0,1) is the planned average FEF. 

 n is the shape parameter of the beta distribution. 

 

Formulae are required for the model parameters RA, RB, and n  before R(t) may be utilized in a 

reliability growth planning context.  These formulae are given below and are expressed as a 

function of the Management Strategy, MS. 

 

In the continuous time domain, MS is defined as the fraction of the initial system failure intensity 

that would be addressed via the corrective action effort if all B-modes were surfaced in test. 
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BA

BMS





  (continuous parameterization) 

where B  
and A  denote the portion of the system failure intensity comprised of failure modes 

that are, and are not, addressed by corrective action, respectively.  Note that B  and A  are 

common parameters utilized in the continuous time domain, whereas RB and RA are the 

parameters used in the discrete-use domain.  By reparameterizing, the MS for discrete-use 

systems is analogously defined as 

BA

B

RR

R
MS

lnln

ln




  (discrete parameterization) 

Note that in both the continuous and the discrete-use domain, the MS is a reliability growth 

planning parameter that is an input provided by the user, which represents the fractional 

contribution to  I or  -ln R(1) for the continuous and discrete cases, respectively, of the B-

modes.  Thus, high values of MS represent high development goals with respect to eliminating 

the system’s propensity to fail.  

 

Using the discrete parameterization of MS, BR is given as,
 

MS

B IR R  

where IR  is the initial reliability goal input by the user, and AR  is given by, 

MS

IA RR  1
 

Notice that 
1 MS MS

A B I I IR R R R R    , as desired.   

 

5.6.5.2  Reliability Growth Potential.    
The reliability growth potential given by PM2-Discrete is derived as the limit of the expected 

reliability function. 

RGP ≡ lim
t→∞

R t ≡ lim
t→∞

RA ⋅ RB

1−μd ⋅
  t−1

n +t−1
  
 

= RA  ⋅ RB
1−μd  

= RI
1−MS  ⋅ RI

MS ⋅ 1−μd   

  = RI
1−MS ⋅μd  

 

From a management stand-point, this expression states that the achievable theoretical upper-limit 

on the reliability of a discrete-use system only depends on three quantities: RI, MS, and d.  Since 

the growth potential represents the asymptote of the idealized planning curve, it is impossible to 

achieve a reliability target above the growth potential for a given design and associated planning 

parameters.   

 

5.6.5.3   Shape Parameter.    
Let TL denote the trial number at the lag time before the last CAP in the growth program (i.e., 

only B-modes that occur before trial TL are assumed to be fixed during the last CAP or a prior 

CAP).  R(TL) is interpreted as the final reliability of the system achieved in the last CAP.  Thus, 

the formula for the shape parameter, n, is found by equating R(TL) = RG, where RG  is the final 
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reliability goal for the system to achieve in a developmental test environment.  The desired 

relationship is given by, 

 
 

 

ln
1

ln

GP G

L

G I

R R
n T

R R
    

If the reliability goal, RG, is chosen higher than RGP, then 0n   and the idealized curve and 

metrics do not exist (since n must be finite and positive).  This emphasizes the importance for the 

practitioner to be mindful of the growth potential as well as the values of MS, fix effectiveness, 

the initial reliability goal, and the final reliability goal when developing a growth program, as not 

all sets of inputs may be theoretically possible to achieve. 

 

5.6.5.4  Expected Number of Failure Modes.   

An important question to answer when developing a reliability growth program is: how many 

correctable failure modes may the program uncover?  The expected number of correctable failure 

modes observed on or before trial t  is expressed as, 

       









1

0

ln
ln

t

j

n

B
B

jn

R
tnnRnt   

where  
 
 x

x
x




  denotes the digamma function, and the parameters RB  and n are given by the 

formulae above.   

 

5.6.5.5  Expected Fraction Surfaced of B-mode Initial System Probability of Failure.   
If a potential reliability growth program is estimated to uncover a dozen B-modes, an important 

question to answer is: how important are they?   In the absence of mitigation, is the expected 

probability of failure on the next trial due to these surfaced B-modes equal to 9 percent or 90 

percent of the initial probability of failure due to a B-mode?  A metric that addresses this is 

defined by, 

 
B

tn

t

B

R

R
t





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

1

1 1

1



 
 

In the absence of mitigation, the numerator is the expected probability of failure on trial t due to 

the occurrence of one or more B-modes that were surfaced before trial t.  The denominator is the 

expected probability of failure on the initial trial due to the occurrence of one or more B-modes.  

Note that  t
  is simply the fraction of  1 − 𝑅 𝐵 that 1

1

1 



 tn

t

BR  represents.  With this in 

mind,  t
 

will be referred to as the ―fraction surfaced‖ metric.  The metric equals zero for t=1 and strictly 

increases with an asymptote of one as t increases.  It provides a measure of program 

management’s ability to improve system reliability via the corrective action effort. 

 

A good management practice would be to specify goals for  t  at important program milestones 

in order to track the progress of the development effort with respect to the maturing design of the 

system from a reliability standpoint.  Small values of  t  indicate that further testing is required 
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to find and effectively correct additional failure modes.  Conversely, large values of  t  indicate 

that further pursuit of the development effort to increase system reliability may not be 

economically justifiable (i.e., the cost may not be worth the gains that could be achieved).  Note 

that program management can eliminate at most the portion  t  from the initial system 

unreliability prior to trial t  regardless of when corrective actions are implemented or how 

effective they are.  This follows since this metric is independent of the corrective action process. 

 

5.6.5.6  Expected Probability of Failure Due to a New B-mode.    
At the end of a reliability growth program, a reasonable question to ask is: what is the probability 

that we will find an unknown B-mode on the next trial?  Per PM2-Discrete, the expected 

probability of discovering a new correctable failure mode on trial t  is given as 

  11  tn

n

BRth  

This may be utilized as a measure of programmatic risk.  For example, as the development effort 

is ongoing, one would like the estimate of   0th .  This condition indicates that program 

management has observed the dominant B-modes in the system.  Conversely, large values of h(t) 

indicate higher programmatic risk of observing additional unseen B-failure modes inherent to the 

current system design.  Effective management and goal-setting of h(t) is a good practice to 

reduce the likelihood of the customer encountering unknown B-failure modes during fielding 

and deployment. 

 

5.6.6 PM2-Discrete Example 

Once the planning parameters are chosen, a detailed reliability growth planning curve may be 

generated utilizing the expected reliability on trial t, given by R t  in Section 5.6.5.1.  For 

example, suppose a test schedule is laid out that gives the planned number of discrete trials 

accumulated in each test phase and specifies blocks of calendar time for implementing corrective 

actions.  For planning purposes, assume that in order for a failure mode to be addressed in an 

upcoming CAP, it must occur prior to the last two shots that precede the CAP.  These two shots 

are what is referred to as the corrective action lag (one could use different lags for each test 

phase if desired).  For this situation, the reliability could be represented by a constant value 

between the ends of CAPs, and between the start of testing and the end of the first scheduled 

CAP.  For such a test plan, jumps in reliability would be portrayed at the conclusion of each 

CAP.  The increased reliability after the jump is given by R ti  where ti denotes the number of 

trials accumulated, as determined from the test schedule, prior to the start of the thi  CAP minus 

the corrective action lag.  In such a manner, a sequence of target reliability steps would be 

generated that grow from the initial reliability value to a goal reliability value. 

 

Figure 29  below depicts a detailed reliability growth planning curve for a complex system for 

the case where A and B failure mode categories are utilized.  The initial reliability for the system 

is RI = 0.8987.  The reliability requirement for the system to demonstrate during IOT&E is RR = 

0.9200.  IOT&E is an operational demonstration test of the system’s suitability for fielding.  

Such a test is mandated by public law for major DoD developmental systems.  In such a 

demonstration test, it may be required to demonstrate RR with a measure of assurance.  In this 

example, the measure of assurance is to demonstrate RR at the 80% statistical confidence level. 
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FIGURE 29.  PM2-Discrete Reliability Growth Planning Curve. 

 

The black curve represents R t .  Note the value R t  is the system reliability one expects to 

obtain once all corrective actions to B-modes surfaced prior to trial t are implemented.  The 

reliability steps are constructed from the black curve, the schedule of CAPs, and the assumed 

corrective action implementation lag.  Note that the goal reliability, RG, was chosen to be larger 

than RR = 0.9200, which is the reliability to be demonstrated during IOT&E.  To have a 

reasonable probability of demonstrating RR with 80% confidence, the system must enter IOT&E 

with an operational MTBF value of 
R

R
, which is greater than RR.  Calculating 

R
R

 can be 

accomplished using an Operating Characteristic (OC) Curve, a statistical procedure for 

demonstration testing.  The OC Curve utilizes the reliability requirement, the number of trials in 

IOT&E, the desired confidence level of the statistical demonstration, and the specified 

probability of being able to achieve the statistical demonstration.  After determining 

0.9639
R

R  , one can consider what the developmental goal reliability, RG , should be at the 

conclusion of the development test.  The value of RG should be the goal reliability to be attained 

just prior to the IOT&E training period that precedes IOT&E.  The goal reliability, RG, 

associated with the development test environment, must be chosen sufficiently above 
R

R
 so that 

the operational test environment (associated with IOT&E) does not cause the reliability of the 

test units to fall below 
R

R
 during IOT&E.  The significant drop (degradation) in reliability that 

often occurs when transitioning from a DT to an OT environment could be attributable to 

operational failure modes that were not encountered during DT.  To obtain RG , the degradation 
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factor,  , is applied to 
R

R
 through the equation 1 (1 )(1 )

RGR R     .  This equation follows 

from assuming   𝑀𝐺 =  
𝑀𝑅

+

1−
  where MG and 𝑀𝑅

+ denote the expected number of trials to failure 

(including the failed trial) associated with RG and  𝑅𝑅
+ respectively.  Note 𝑀𝐺 =  1 / (1 − RG )  

and  𝑀𝑅
+  =  1 / (1 − 𝑅𝑅

+)  .  In our example, we used a degradation factor of 0 since we 

assumed the DT and OT environments were comparable.  Therefore, for our example, 

0.9639
RGR R  . 

 

The depiction of growth in Figure 29 does not preclude the possibility that some fixes may be 

implemented outside of the CAPs (i.e., during a test phase).  These would typically be fixes to 

maintenance or operational procedures, or may include easily diagnosed and implemented design 

changes to hardware or software.  If fixes are expected to be applied during a test phase, then a 

portion of the jump in reliability (or drop in system probability of failure) portrayed in the figure 

at the conclusion of a test phase CAP would be realized during the test phase (prior to the 

associated CAP).   However, the majority of the reliability growth would typically be expected to 

occur due to groups of fixes that are scheduled for implementation in CAPs.  These would 

include fixes whose implementation would involve intrusive physical procedures.  For planning 

purposes, each test phase step in Figure 29 simply portrays the test phase reliability that would 

be expected if no fixes were implemented during the test phase.  

 

5.6.7 Failure Mode Preclusion Considerations. 

In a discrete-use system, there is often a well-defined sequence of stages of operation that 

comprise the mission of the system. For a missile system, e.g., the mission might be sequentially 

decomposed into prelaunch ground operations, followed by the launch stage, then flight to 

target, terminating in the final approach and target destruction. A failure mode in one stage could 

end the mission and hence preclude potential failure modes from occurring that are associated 

with later stages. The above planning model assumptions and associated formulas will only be 

suitable to the extent that such potential preclusion is a second order effect that need not be 

modeled in the planning methodology.  If this is not deemed the case, then to minimize the 

preclusion effect, one could apply the planning model approach separately to each stage.  If this 

is done then, one has to assign stage developmental reliability goals that multiply to the desired 

system developmental reliability goal to be achieved by the end of the growth test.  This assumes 

the system can be treated as a serial decomposition of statistically independent stages given 

proper inputs from the preceding stages.  The reliability goal of stage i would represent the 

probability that stage i completes its functions successfully, given the previous stages are 

successful. 

     

5.7 Threshold Program.   

 

5.7.1 Purpose.   
The purpose of the threshold program is to determine whether the reliability of a system at 

selected program milestones is failing to progress according to the idealized growth curve 

established prior to the start of the growth test.  The program can be used to compare a reliability 

point estimate (based on actual failure data) against a theoretical threshold value.  
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For multiple thresholds, the Threshold Program examines conditional distributions of MTBF 

estimates, given the previous thresholds were not breached.  It provides a hypothesis test of 

whether growth is occurring along a specified idealized curve.  It can be utilized for system or 

subsystem growth curves. 

 

5.7.2 Assumptions. 

The Threshold Program assumes that the test duration is continuous and reliability growth is 

governed by a NHPP with power law mean value function over one test phase.   

 

5.7.3 Limitations. 

All the conditions of SPLAN apply, which include: 

a) sufficient opportunities for corrective action implementation are required so growth is 

portrayed as a smooth curve;  

b) the expected number of failures needs to be sufficiently large;  

c) the portion of testing utilized for reliability growth planning should be reflective of the 

OMS/MP;  

d) the initial test length must be reasonably small (allowing for reliability growth); and 

e) the initial MTBF cannot be specified independent of the length of the initial test phase. 

 

5.7.4 Methodology. 

The program compares a reliability point estimate (based on actual failure data) against a 

theoretical threshold value. The test statistic in this procedure is the point estimate calculated 

from the test data. If this estimate falls at or below the threshold value, it would indicate that the 

achieved reliability is statistically not in conformance with the idealized growth curve. At that 

point, management might want to take some kind of action to restore reliability to a higher level 

by restructuring the program, utilizing a more intensive corrective action process, make a vendor 

change, or perform additional lower level testing. 

 

The threshold program embodies a methodology that is best suited for application during a 

reliability growth test referred to as the Test-Analyze-Fix-Test (TAFT) program.  When a failure 

is observed under a TAFT program, testing stops until the failure is analyzed and a corrective 

action is incorporated on the system.  Testing then resumes with a system that (presumably) has 

a better reliability. The graph of the reliability for this testing strategy is a series of small 

increasing steps that can be approximated by a smooth idealized curve.   

 

Recall that the initial time, TI, marks off a period of time in which the initial reliability of the 

system is essentially held constant while early failures are being surfaced.  Corrective actions are 

then implemented at the end of this initial phase, and this gives rise to improvement in the 

reliability.  Therefore, to make threshold assessments during the period of growth, milestones 

should be established at points in time that are sufficiently beyond TI. 

 

Note also that reliability increases during test until it reaches its maximum value of MG by the 

end of the test at T.  Growth usually occurs rapidly early on, and then tapers off toward the end 

of the test phase.  Therefore, in order to have sufficient time to verify that remedial adjustments 

(if needed) to the system are going to have the desired effect of getting the reliability back on 

track, milestones must be established well before T. 
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In practice, it is possible that the actual milestone test time may differ, for a variety of reasons, 

from the planned milestone time.  In that case, one would simply recalculate the threshold based 

on the actual milestone time. 

 

There are only three inputs necessary to define the idealized curve to build a distribution of 

MTBF values – the total test time, T; the final MTBF, MG; and the growth rate, α..  The initial 

MTBF, MI, and the initial time period, TI, are not required because this implementation assumes 

that the curve goes through the origin.  In general, this is not a reasonable assumption to make 

for planning purposes, but for the purposes of the Threshold Program the impact is negligible, 

especially since milestones are established sufficiently beyond TI.    If more than one milestone is 

needed, then the subsequent milestones are conditional in the sense that milestone k cannot be 

reached unless the system gets through the previous k-1 milestones. 

 

A distribution of MTBF values is developed by generating a large number of failure histories 

from the parent curve, defined by T, M G and α.  Typically, the number of failure histories may 

range from 1000 to 5000, where each failure history corresponds to a simulation run.  The 

threshold value is that reliability value corresponding to a particular percentile point of an 

ordered distribution of reliability values.  A percentile point is typically chosen at the 10
th

 or 20
th

 

percentile when establishing the rejection region – a small area in the tail of the distribution that 

allows for a test of hypothesis to be conducted to determine whether the reliability of the system 

is ―off‖ track.  The test statistic in this procedure is the reliability point estimate that is computed 

from test failure data which is compared to the threshold reliability value.   

 

 

5.7.5 Threshold Program Example.   
The process begins with a previously constructed idealized growth curve with a growth rate of 

0.25 and the reliability growing to a final MTBF (requirement) of 70 hours by the end of 1875 

hours of test time.  These parameters (, M G, and T), along with a milestone selected at 1000 

hours and a threshold percentile value of 20% were selected.  A failure history number was set at 

2500 histories.  The resulting reliability threshold of approximately 46 hours was computed.  

Now, suppose that a growth test is subsequently conducted for T = 1875 hours.  Using the 

AMSAA RGTMC, an MTBF point estimate is computed based on the first 1000 hours of growth 

test data.  If the resulting MTBF point estimate at the selected milestone is above the threshold 

value, then there is not strong statistical evidence to reject the null hypothesis that the system is 

growing according to plan.  However, if the resulting MTBF point estimate at the 1000 hour 

milestone is at or below the threshold value, then there is strong statistical evidence to reject the 

null hypothesis and a red flag would be raised.  This red flag is a warning that the achieved 

reliability, as computed with the AMSAA RGTMC, is statistically not in conformance with the 

pre-established idealized growth curve, and that the information collected to date indicates that 

the system may be at risk of failing to meet its requirement.  This situation should be brought to 

the attention of management, testers, and reliability personnel for possible remedial action to get 

the system reliability back on track. 
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6. RELIABILITY GROWTH ASSESSMENT.  

 

6.1 Introduction.    
Reliability growth assessment is an area of reliability growth that provides management the 

opportunity to gauge the progress of the reliability effort (i.e., reliability growth tracking) and 

project what reliability might be attained at a future time or date for a system (i.e., reliability 

growth projection).  Reliability growth tracking provides a means of estimating the demonstrated 

reliability from test.  Reliability growth projection provides a means of estimating future 

reliability when all corrective actions are incorporated after testing.  For reliability growth 

tracking, the models covered are all based on the power law approach.  For reliability growth 

projection, the models are based on both the power law and AMSAA Maturity Projection Model 

(AMPM) approaches. 

 

The objectives of reliability growth tracking include:  

a) Determining if system reliability is increasing with time (i.e., growth is occurring) and to 

what degree (i.e., growth rate),   

b) Estimating the demonstrated reliability (i.e., a reliability estimate based on test data for 

the system configuration under test at the end of the test phase).  This estimate is based 

on the actual performance of the system tested and is not based on some future 

configuration. 

c) Comparing the demonstrated reliability to the threshold value to ascertain that reliability 

is growing in accordance with planned growth. 

 

The objectives of reliability growth projection include: 

a) Projecting expected reliability at a current or future time or milestone based on 

i. Program planning parameters (MS, FEF) 

ii. Current test results 

b) Analyzing sensitivity of reliability projection to program planning parameters (e.g., FEF) 

c) Determining maturity of the system and/or subsystems 
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6.1.1 Practical Data Analysis Considerations 

There are many tasks that should be performed either before running the models or in 

conjunction with running the models.  For example, a thorough review and analysis of the data 

should be performed in order to better understand the data, locate potential shortcomings, 

identify if data from different tests could be aggregated, identify outliers that could affect results, 

determine if data plots or analyses of the failure modes suggest anything, etc.  In some cases the 

last analysis performed might be running the final model for estimation of point and interval 

values and looking into projections.  

 

Figure 30 and the subsequent paragraphs are provided as an aid in guiding analysis.  

 

 
FIGURE 30.  Reliability Evaluation Flowchart 

 

The following are suggestions for initial actions that might be taken, a number of which may not 

seem to directly impact running the tracking models. These often lead to identification of 

problems and a better understanding of the data, the underlying processes, and subsequently the 

analysis.  

a) Review the data for consistency, omissions, etc.  Group the data by configuration or other 

logical break out, sort the data chronologically, and plot the data.  This allows for 

identification of trends and suspect outliers. 

b) Develop functional reliability models, e.g. series versus parallel. 
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c) Check if data can be aggregated.  Look for reasons why data may be different, e.g., 

different test conditions or system configurations.   

d) Compare the data to data from previous test phases, previous tests, or testing of 

predecessor systems.  Determine if improvements have been made and if they are 

reflected in an improvement in reliability. 

e) Identify failure modes and stratification.  Identify driver failure modes for possible 

corrective action.  Classify the failure modes by major subsystems.   

f) Determine what conditions may have impacted the data.  Determine impacts of data 

analysis on the program. 

g) Determine applicability of the growth model.  Before using a statistical model, one 

should determine whether the model is in reasonable agreement with the failure pattern 

exhibited by the data.  This should be done graphically as well as statistically.   

i. Plot cumulative failure rate versus cumulative time on a log-log scale as for the 

Duane log-log plot or graphically plot cumulative failure (y-axis) vs. cumulative 

operating time (x-axis), as shown below in Figure 31.  Both methods provide 

simple, effective means to visually assess whether or not a trend exists and whether 

to model using a HPP (times between failure are independent identically 

exponentially distributed) or NHPP (times between failure tend to increase or 

decrease with time or age).  Table V is used to illustrate the latter plot for two 

systems under test, where TTSFi denotes the time to i
th

 system failure. 

ii. The Laplace test statistic can be used to determine if the times between failures are 

tending to increase, decrease or remain the same.  The underlying probability model 

for the Laplace test is a NHPP having a log-linear intensity function.  This test is 

appropriate at finding significance when the choice is between no trend and a NHPP 

log-linear model.  In other words, if the data come from a system following the 

exponential law.  This test will generally do better than any other test in terms of 

finding significance. 

h) Apply growth methodology, conduct goodness-of-fit, and calculate MTBF point and 

interval estimates.   

i) Assess the risk.  Perform sensitivity analysis.  If tracking growth is below the idealized 

planned growth, determine what growth rate is required to get back on track.  Verify that 

the new growth rate is not too aggressive.  Determine if the corrective actions are 

effective.  Verify that the required FEFs do not exceed historical values.  Determine if 

there is sufficient time for implementation of corrective actions and test verification.     
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FIGURE 31.  Cumulative Failures Vs. Cumulative Operating Time 

 

 

 

TABLE V.  System arrival times for a NHPP 

 

 
 

6.2 Reliability Growth Tracking. 

 

6.2.1 Introduction. 

 

6.2.1.1 Background.  
The reliability growth tracking models presented here are based on an empirical observation, 

originally made by (Duane 1964).  Letting N(t) denote the number of failures by time t, Duane 

observed that the logarithm of the average cumulative number of failures observed by test time t 

(i.e., N(t)/t) versus the logarithm of the cumulative test time tends to exhibit a linear relationship 

with slope –α and intercept law: ln  
𝑁(𝑡)

𝑡
 = ln𝜔 − 𝛼 ln 𝑡 .  Taking the inverse logarithm of both 

sides of this linear equation yields the power law, namely 

N(t) = 𝜔t
 
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where 𝜔is the scale or size parameter (𝜔 > 0, and (𝛽 = 1 − 𝛼)is the shape parameter 

(𝛽 > 0).   

 

6.2.1.2 Management’s Role.   
The role of management in the reliability growth tracking process is twofold: 

a) To systematically plan and assess reliability achievement as a function of time and other 

program resources (such as personnel, funding, available prototypes, etc.,) and to control 

the ongoing rate of reliability achievement by the addition to or reallocation of these 

program resources based on comparisons between the planned and demonstrated 

reliability values; and 

b) To periodically assess reliability during the test program and compare the results to the 

planned reliability goals and the planned reliability growth curve.   

 

6.2.1.3 Types of Tracking Models.   
Tracking models are distinguished according to the level at which testing is conducted and 

failure data are collected.  Tracking models fall into two categories: system level and subsystem 

level.  System level reliability growth tracking models are further classified according to the 

usage of the system - continuous and discrete.  For continuous models, outcomes are usually 

measured in terms of time/miles between failures.  For discrete models, outcomes are recorded in 

terms of distinct, countable events that give rise to probability estimates. 

 

6.2.1.4 Test Strategies. 

There are three primary test strategies: test-fix-test, test-find-test, and test-fix-find-test.  In the 

test-fix-test strategy, failure modes are surfaced during the test and associated corrective actions 

are implemented during the test.  In the test-find-test strategy, failure modes are surfaced during 

the test, but all corrective actions are delayed and implemented after completion of the test.  The 

test-fix-find-test strategy is a combination of the previous two approaches.  Reliability growth 

tracking models are appropriate for use in text-fix-test approaches. 

 

6.2.1.5 Benefits. 

Reliability growth tracking based on the power law has many significant benefits which prevent 

the process from being subjected to opinion or bias.  It is instead statistically based, and therefore 

estimation is made on a sound and consistent basis.  The following is a list of tracking 

methodology benefits.  

a) Uses all failure data (no purging).  The tracking model eliminates the need to purge data, 

as seen from the estimate of MTBF given in Section 6.2.2.8.1.  β  < 1  β = 1 − α   for 

growth, so that the denominator reduces the number of failures in accordance with a 

growth situation. 

b) Statistically estimates the current reliability (demonstrated value) and provides statistical 

confidence bounds on reliability. 

c) Allows for a statistical test of the model applicability through goodness-of-fit tests. 

d) Determines the direction of reliability growth from the test data - Positive growth  𝛼  0), 

No growth  𝛼  = 0), Negative growth  𝛼   0). 

e) Highlights to management shortfalls in achieved reliability compared to planned 

reliability. 
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f) Provides a metric for tracking progress that may provide a path for early transition into 

the next program phase. 

 

6.2.1.6 Elements of Reliability Growth Tracking.   

Important elements of reliability growth tracking analysis include proper failure classification, 

test type, configuration control, and data collection.  Many of these elements are spelled out in 

the FRACAS.   

 

6.2.1.7 Reliability Growth Tracking Models Covered.  

 The three reliability growth tracking models presented in this handbook include:  

a) AMSAA Reliability Growth Tracking Model – Continuous (RGTMC);  

b) AMSAA Reliability Growth Tracking Model – Discrete (RGTMD); and  

c) Subsystem Level Tracking Model (SSTRACK).   

 

6.2.2  AMSAA Reliability Growth Tracking Model – Continuous (RGTMC). 

 

6.2.2.1 Purpose.    
The purpose of the AMSAA RGTMC is to assess the reliability improvement (within a single 

test phase) of a system during development, for which usage is measured on a continuous scale.  

The model may be utilized if individual failure times are known, or if failure times are only 

known to an interval (grouped data). 

 

6.2.2.2 Assumptions.   
The assumptions associated with the AMSAA RGTMC are:  

a) Test duration is continuous and  

b) Failures within a test phase occur according to a NHPP with power law mean value 

function. 

 

6.2.2.3 Limitations.    
The limitations associated with the AMSAA RGTMC include:  

a) the model will not fit the test data if large jumps in reliability occur as a result of the    

applied corrective action implementation strategy;  

b) the model will be inaccurate if the testing does not adequately reflect the OMS/MP;  

c) if a significant number of non-tactical fixes are implemented, the growth rate and 

associated system reliability will be correspondingly inflated as a result; and 

d) with respect to contributing to the reliability growth of the system, the model does not 

take into account reliability improvements due to delayed corrective actions. 

 

6.2.2.4 Benefits.   
The benefits associated with the AMSAA RGTMC include:  

a) the model can gauge demonstrated reliability versus planned reliability;  

b) the model can provide statistical point estimates and confidence intervals for MTBF and 

growth rate; and  

c) the model allows for statistical goodness-of-fit testing. 
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6.2.2.5 Basis for the Model.    
The model is designed for tracking system reliability within a test phase, not across test phases.  

Accordingly, let the start of a test phase be initialized at time zero, and let 0 = t0 < t1 < t2 <…< tk 

denote the cumulative test times on the system when design modifications are made.  Assume the 

system failure rate is constant between successive sti ' , and let 
i  denote the constant failure 

intensity during the i-th time interval [ti-1, ti).  The time intervals do not have to be equal in 

length.  Based on the constant failure intensity assumption, the number of failures during the i-th 

time interval,
 iF  , is Poisson distributed with mean θi = i (ti – ti-1).  That is, 

 
 ,...2,1,0

!
)(Prob 



f
f

e
fF

i
f

i

i


    

a) If more than one system prototype is tested and the prototypes have the same basic 

configuration between modifications, then under the constant failure intensity 

assumption, the following are true:  the time ti  may be considered as the cumulative test 

time to the i-th modification; and 

b) Fi may be considered as the cumulative total number of failures experienced by all 

system prototypes during the i-th time interval [ti-1, ti). 

 

The previous discussion is summarized graphically in Figure 32. 

 

 

 
FIGURE 32.  Failure Rates between Modifications 

 

 

When the failure intensity is constant (homogeneous) over a test interval, then F(t) is said to 

follow a homogeneous Poisson process with mean number of failures of the form t .  When the 

failure intensities change with time, e.g., from interval 1 to interval 2, then under certain 

conditions, F(t) is said to follow a NHPP.  In the presence of reliability growth, F(t) would 

follow a NHPP with mean value function    

t

o

dyyt )()(    
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where    y = i , y[ti−1, ti) .  From the above equation, for any t > 0, 

 

𝑃𝑟𝑜𝑏 𝐹 𝑡 = 𝑓 =
 𝜃(𝑡) 𝑓𝑒−𝜃(𝑡)

𝑓!
,   f=0,1,2,… 

   

The integer-valued process {F(t), t>0} may be regarded as a NHPP with intensity function  t .    

If    t , a constant failure rate for all t, then a system is experiencing no growth over time, 

corresponding to the exponential case.  If  t  is decreasing with time, (1 > 2 > 3 …), then a 

system is experiencing reliability growth.  Finally,  t  increasing over time indicates a 

deterioration in system reliability. 

 

6.2.2.6 Methodology.    
The AMSAA RGTMC model assumes that within a test phase, failures are occurring according 

to a NHPP with failure intensity (rate of occurrence of failures) represented by the parametric 

function:  𝜌 𝑡 =  λβtβ−1 for  λ, β, t > 0 

where   is referred to as the scale parameter,   is referred to as the growth or shape parameter 

(because it characterizes the shape of the intensity function), and t is the cumulative test time.  

Under this model, the function 

m t =
1

ρ t 
=  λβtβ−1 

−1
 

 

is interpreted as the instantaneous MTBF of the system at time t.  When t = T, the total 

cumulative time for the system, then m(T) is the demonstrated MTBF of the system in its present 

configuration at the end of test.  Figure 33 shows the parametric approximation to failure rates 

between modifications. 

 

 
 

 

FIGURE 33.   Parametric Approximation to Failure Rates between Modifications 
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Note that in Figure 33, the theoretical curve is undefined at the origin.  Typically the MTBF 

during the initial test interval  is characterized by a constant reliability, with growth 

occurring beyond .  Figure 34 shows an example of this type of growth. 

 

 

 
 

 

 

FIGURE 34.  Test Phase Reliability Growth based on the AMSAA RGTMC 

 

 

6.2.2.7 Equations and Metrics.   

 

6.2.2.7.1 Cumulative Number of Failures.  
The total number of failures F(t) accumulated on all test items in cumulative test time t is a 

Poisson random variable, and the probability that exactly  failures occur between the initiation 

of testing and the cumulative test time t is: 

Prob F t = f =
 θ t  fe−θ t 

f!
 

in which  t  is the mean value function; that is, the expected number of failures expressed as a 

function of test time.  For a NHPP, the mean value function at time t is just 𝜃 𝑡 =  𝜌 𝑥 𝑑𝑥
𝑡

0
.  

To describe the reliability growth process, the cumulative number of failures is then    tt  , 

where   and   are positive parameters. 

 

6.2.2.7.2 Number of Failures in an Interval.  

The number of failures occurring in the interval from test time 
1t  until test time 

2t , where  t2 > t1 

is a Poisson random variable with mean: 

      1212 tttt   
According to the model assumption, the number of failures that occur in any time interval is 

statistically independent of the number of failures that occur in any non-overlapping interval, and 

only one failure can occur at any instant of time. 

 1,0 t

1t

  

MTBF   

0   T   t   t   1   

m(T)               m   t   t            
         1   

1   
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6.2.2.7.3 Intensity Function.   
The intensity function is sometimes referred to as a failure rate; it is not the failure rate of a life 

distribution, rather it is the rate of occurrence of failures for a process, namely a NHPP. 

 

6.2.2.8 Estimation Procedures for the Option for Individual Failure Time Data.    

Modeling reliability growth as a NHPP permits an assessment of the demonstrated reliability by 

statistical procedures.  The method of maximum likelihood provides estimates for  and  , 

which are used in the estimation of the intensity function  t . The reciprocal of the current value 

of the intensity function is the instantaneous mean time between failures (MTBF) for the system.   

 

The procedures outlined here are used to analyze data for which (a) the exact times of failure are 

known and (b) testing is conducted on a time terminated basis or the tests are in progress with 

data available through some time.  The required data consist of the cumulative test time on all 

systems at the occurrence of each failure as well as the accumulated total test time T.  To 

calculate the cumulative test time of a failure occurrence, it is necessary to sum the test time on 

every system at the point of failure.  The data then consist of the F successive failure times X1 < 

X2 < X3 <…< XF that occur prior to T.  This case is referred to as the Option for Individual 

Failure Time Data. 

 

6.2.2.8.1 Point Estimation.    

The method of maximum likelihood provides point estimates for the parameters of the failure 

intensity function.  The maximum likelihood estimate (MLE) for the shape parameter   is: 







F

i

iXTF

F

1

lnln

̂

 
By equating the observed number of failures by time T (namely F) with the expected number of 

failures by time T (namely E[F(T)]) and by substituting MLE’s in place of the true, but 

unknown, parameters we obtain: 

F = λ Tβ  
 

from which we obtain an estimate for the scale parameter  : 

λ =
F

Tβ 
 

 

For any time t > 0, the failure intensity function is estimated by: 

ρ  t = λ β tβ
 −1 

     

and can be written as: 

ρ  T = λ β Tβ −1 = β  
λ Tβ 

T
 = β  

F

T
  

 

where F/T is the estimate of the intensity function for a homogeneous Poisson process.   
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Finally, the reciprocal of  T̂  provides an estimate of the mean time between failures of the 

system at the time T and represents the system reliability growth under the model: 

m  T =
1

ρ  T 
=  λ β Tβ −1 

−1
 

 

6.2.2.8.2 Interval Estimation.    

Interval estimates provide a measure of the uncertainty regarding a parameter.  For the reliability 

growth process, the parameter of primary interest is the system mean time between failures at the 

end of test, m(T).  The probability distribution of the point estimate for the intensity function at 

T,  T̂ , is the basis for the interval estimate for the true (but unknown) value of the intensity 

function at T,  T . 

  

(Crow Jun 1977) developed values to facilitate computation of two-sided confidence intervals for 

m(T) for time terminated tests by providing confidence coefficients L and U corresponding to the 

lower bound and upper bound, respectively.  These coefficients are indexed by the total number 

of observed failures F and the desired confidence level .  The two-sided confidence interval for 

m(T) is thus: 

LF,γm  T ≤ m T ≤ UF,γm  T  

    

These tabulated values may be used to compute one-sided interval estimates (LCBs) for m(T) 

such that: 

LF,γm  T ≤ m T  

      

Since the number of failures has a discrete probability distribution, the interval estimates are 

conservative; that is, the actual confidence level is slightly larger than the desired confidence 

level . 

 

6.2.2.8.3 Goodness-of-Fit.    
For the case where the individual failure times are known, a Cramér-von Mises statistic is used 

to test the null hypothesis that the NHPP properly describes the reliability growth of the system.  

To calculate the statistic, an unbiased estimate of the shape parameter   is used: 

 ˆ1

F

F 


 
This unbiased estimate of   is for a time terminated reliability growth test with F observed 

failures.  The goodness-of-fit statistic is: 
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where the failure times X i

 must be ordered so that 0 < X1 ≤ X2 ≤ ⋯ ≤ XF ≤ T.  The null 

hypothesis that the model represents the observed data is rejected if the statistic CF
 exceeds the 

critical value for a chosen significance level .   

 

Besides using statistical methods for assessing model goodness-of-fit, one should also construct 

an average failure rate plot or a superimposed expected failure rate plot (as shown in FIGURE 
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35).  These plots, derived from the failure data, provide a graphic description of test results and 

should always be part of the reliability analysis. 

 

6.2.2.9 AMSAA RGTMC Example Using Individual Failure Time Data.    
The following example demonstrates the option for individual failure time data in which two 

prototypes of a system are tested concurrently with the incorporation of design changes.  Each 

prototype was tested for 150 hours, for a total of T = 300 cumulative test hours.   Table VI shows 

the time of the failures for each prototype and the cumulative test time at each failure occurrence.  

There are a total of F = 45 failures.  Note that the data are from a time terminated test. 

 

TABLE VI.  Test data for individual failure time option. 

(An asterisk denotes the failed system.) 

Failure 

Number 

Prot. #1 

Hours 

Prot. #2 

Hours 

Cum 

Hours 

Failure 

Number 

Prot. #1 

Hours 

Prot. #2 

Hours 

Cum 

Hours 

1 2.6* .0 2.6 15 60.5 37.6* 98.1 

2 16.5* .0 16.5 16 61.9* 39.1 101.1 

3 16.5* .0 16.5 17 76.6* 55.4 132.0 

4 17.0* .0 17.0 18 81.1 61.1* 142.2 

5 20.5 .9* 21.4 19 84.1* 63.6 147.7 

6 25.3 3.8* 29.1 20 84.7* 64.3 149.0 

7 28.7 4.6* 33.3 21 94.6* 72.6 167.2 

8 41.8* 14.7 56.5 22 104.8 85.9* 190.7 

9 45.5* 17.6 63.1 23 105.9 87.1* 193.0 

10 48.6 22.0* 70.6 24 108.8* 89.9 198.7 

11 49.6 23.4* 73.0 25 132.4 119.5* 251.9 

12 51.4* 26.3 77.7 26 132.4 150.1* 282.5 

13 58.2* 35.7 93.9 27 132.4 153.7* 286.1 

14 59.0 36.5* 95.5 End 132.4 167.6 300.0 

 

By using the 45 failure times listed under the columns labeled ―Cumulative Hours‖ in Table VI 

we obtain the following estimates derived from RGTMC.  The point estimate for the shape 

parameter is 𝛽 =  .826; the point estimate for the scale parameter is 𝜆 =  .404; the estimated 

failure intensity at the end of the test is 𝜌  𝑇 =  .124 failures per hour; the estimated MTBF at 

the end of the 300-hour test is m  T = 8.07 hours.   FIGURE 35.   illustrates superimposing a 

graph of the estimated intensity function atop a plot of the average failure rate (using six 50-hour 

intervals) which reveals a decreasing failure intensity indicative of reliability growth. 
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FIGURE 35.   Estimated Intensity Function. 

 

 

For a confidence level of 90 percent, the two-sided interval estimate for the MTBF at the end of 

the test is [5.7, 11.9].  These results and the estimated MTBF tracking growth curve (substituting 

t for T) are shown below in FIGURE 36.    

 

 
FIGURE 36.   Estimated MTBF Function with 90% Interval Estimate at T=300 Hours. 

 

 

Finally, to test the model goodness-of-fit, a Cramér-von Mises statistic is compared to the critical 

value corresponding to a chosen significance level  and total observed number of 

failures F = 45.  Linear interpolation is used to arrive at the critical value.  Since the statistic, 

0.0915, is less than the critical value, 0.218, there is no statistical evidence against using the 

AMSAA RGTMC for this data set. 
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6.2.3   Estimation Procedures for the Option for Grouped Data.   
Reliability growth parameters can be estimated in accordance with the AMSAA RGTMC even if 

the exact times of failure are unknown and all that is known is the number of failures that 

occurred in each interval of time provided there are at least three intervals and at least two 

intervals have failures.  This case is referred to as the Option for Grouped Data.  This section 

describes the estimation procedures and goodness-of-fit procedures for analyzing such data.  In 

the following discussion, the words ―group‖ and ―interval‖ are interchangeable. 

 

6.2.3.1.1  Point Estimation.    
The required data consist of the total number of failures in each of K intervals of test time.  The 

first interval always starts at test time zero so that t0 = 0.  The groups do not have to be of equal 

length.  The observed number of failures in the interval from ti1
 to ti

 is denoted by Fi.  

 

The method of maximum likelihood provides point estimates for the parameters of the model.  

The maximum likelihood estimate for the shape parameter   is the value that satisfies the 

nonlinear equation given by 
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in which t0 ln t0 is defined as zero.  By equating the total expected number of failures to the total 

observed number of failures: 

. 

Solving for  , we obtain an estimate for the scale parameter: 




ˆ

K

K

1 = i

i

t

F

=ˆ


. 

Point estimates for the intensity function  (t)  and the mean time between failures function  m t  

are calculated as in the previous section that describes the Option for Individual Failure Time 

Data; that is, 

 

                                       
The functions in the above equations provide instantaneous estimates that give rise to smooth 

continuous curves, but these functions do not describe the reliability growth that occurs on a 

configuration basis representative of grouped data.  Under the model option for grouped data, the 

estimate for the MTBF for the last group, M K , is the amount of test time in the last group divided 

by the estimated expected number of failures in the last group. 

K

KK

K
E

tt
M

ˆ
ˆ 1



, 

where the estimated expected number of failures in the last group E K  is given by 

      
  

0 , ˆ , ˆ ˆ ˆ 1 
   

t t t m    
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0 >  t , ˆ , ˆ  t ˆ ˆ = t ˆ 1 
^ 
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 
ˆ

1

ˆˆˆ
 KKK ttE . 

 

The estimated failure intensity for the last group is then 

ρ K =
1

M K
. 

 

6.2.3.1.2 Interval Estimation.    
Approximate LCBs and two-sided confidence intervals (Crow Jun 1977) may be computed for 

the MTBF for the last group.  A two-sided approximate confidence interval for MK
 may be 

calculated from: 

LF,γM K ≤ MK ≤ UF,γM K , 

 

and a one-sided approximate interval estimate for MK
 may be calculated from 

LF,γM K ≤ MK , 

 

where F is the total observed number of failures and  is the desired confidence level 

 

6.2.3.1.3 Goodness-of-Fit.   
A chi-squared goodness-of-fit test is used to test the null hypothesis that the AMSAA RGTMC 

adequately represents a set of grouped data.  The expected number of failures in the interval from 

ti1
 to ti

 is approximated by 

 
ˆ

1

ˆˆˆ
 iii ttE

. 
Adjacent intervals may have to be combined so that the estimated expected number of failures in 

any combined interval is at least five.  Let the number of intervals after this recombination be 𝐾𝑅 , 

and let the observed number of failures in the i-th new interval be Oi
 and the estimated expected 

number of failures in the i-th new interval be iÊ .  Then the statistic 

 

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RK
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2

2
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is approximately distributed as a chi-squared random variable with KR  2  degrees of freedom.  

The null hypothesis is rejected if the  2  statistic exceeds the critical value for a chosen 

significance level.  Critical values for this statistic can be found in tables of the Chi-Square 

distribution. 

 

Besides using statistical methods, an average failure rate plot or a superimposed expected failure 

rate plot should also be constructed.  These plots provide a graphical description of test results 

and should be part of any reliability analysis. 

 

6.2.3.2 AMSAA RGTMC Example Using Grouped Data.    
The following example uses aircraft data to demonstrate the option for grouped data.  In this 

example, an aircraft has scheduled inspections at intervals of twenty flight hours. For the first 

100 hours of flight testing, the results are shown in Table VII. 
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TABLE VII. Test data for grouped option. 

 

Start Time 

 

End Time 
Observed Number of 

Failures 

0 20 13 

20 40 16 

40 60 5 

60 80 8 

80 100 7 

 

 

There are a total of F = 49 observed failures from K = 5 intervals.  The solution for ̂  yields an 

estimate of 0.753.  The scale parameter estimate is 1.53.  For the last group, the intensity 

function estimate is 0.379 failures per flight hour and the MTBF estimate is 2.6 flight hours.  

TABLE VIII shows that adjacent intervals do not have to be combined since all expected 

numbers of failures are greater than 5.  Therefore, KR = 5. 

 

TABLE VIII.  Observed versus expected number of failures. 

For Test Data for Grouped Data Option 

 

Start Time 

 

End Time 

Observed Number of 

Failures 

Estimated Expected 

Number of Failures 

0 20 13 14.59 

20 40 16 9.99 

40 60 5 8.77 

60 80 8 8.07 

80 100 7 7.58 

 

To test the model goodness-of-fit, a Chi-Square statistic of 5.5 is compared to the critical value 

of 7.8 corresponding to 3 degrees of freedom and a 0.05 significance level.  Since the statistic is 

less than the critical value, the applicability of the model is accepted. 

 

6.2.4  AMSAA Reliability Growth Tracking Model – Discrete (RGTMD). 

Reliability growth tracking methodology may also be applied to discrete data in a manner that is 

consistent with the learning curve property observed by Duane for continuous data.  Growth 

takes place on a configuration by configuration basis.  Accordingly, this section describes model 

development and maximum likelihood estimation procedures for assessing system reliability for 

one-shot systems during development. 

 

6.2.4.1  Purpose.    
The purpose of the AMSAA RGTMD is to track reliability of one-shot systems during 

development for which usage is measured on a discrete basis, such as trials or rounds. 

 

6.2.4.2 Assumptions.    
The assumptions associated with the AMSAA RGTMD include:  
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a) test duration is discrete (i.e. trials, or rounds); 

b) trials are statistically independent;  

c) the number of failures for a given system configuration is distributed according to 

a binomial random variable; and  

d) the cumulative expected number of failures through any initial sequence of 

configurations is given by the power law. 

 

6.2.4.3 Limitations.    
The limitations associated with the AMSAA RGTMD include: 

a) The MLE solution may occur on the boundary of the constraint region of reliability, 

which can give an unrealistic estimate of zero for the initial reliability; and   

b) Goodness-of-fit tests cannot be performed if there are a limited number of failures.   

 

6.2.4.4 Benefits.    
The benefits associated with the AMSAA RGTMD include:  

a) Gauging demonstrated reliability versus planned reliability; and  

b) Providing approximate LCBs for system reliability (when the MLE solution does 

not lie on the boundary). 

   

6.2.4.5 Basis for the Model.   
The motivation for the AMSAA RGTMD version of the AMSAA RGTMC comes from the 

learning curve approach for continuous data. 

 

Let t denote the cumulative test time, and let K(t) denote the cumulative number of failures by 

time t.  The cumulative failure rate, c(t), is the ratio 

c t =
K t 

t
. 

 

While plotting test data from generators, hydro-mechanical devices and aircraft jet engines, 

Duane observed that the logarithm of the cumulative failure rate was linear when plotted against 

the logarithm of the cumulative test time, which yields 

ln c t = δ − α ln t. 
 

By letting  ln  =  for the y-intercept and by exponentiating both sides of the above equation, 

the cumulative failure rate becomes 

c t = λt−α  
 

By substitution, 
K t 

t
= λt−α  

 

Multiplying both sides by t and letting   1 , the cumulative number of failures by t becomes 

K t = λtβ . 

 

This power function of t is the learning curve property for K(t), where  ,  0 . 
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6.2.4.6 Development of AMSAA RGTMD.    
To construct the AMSAA RGTMD, the power function developed from the learning curve 

property for K(t) is used to derive an equation for the probability of failure on a configuration 

basis.  Model development proceeds as follows.  Suppose system development is represented by 

i configurations.  (This corresponds to i 1  configuration changes, unless corrective actions are 

implemented at the end of the test phase, in which case there would be i configuration changes.)  

Let Ni be the number of trials during configuration i, and let Mi be the number of failures during 

configuration i.  Then the cumulative number of trials through configuration i, Ti, is the sum of 

the Ni for all i. 

𝑇𝑖 =  𝑁𝑗  

𝑖

𝑗=1

 

 

The cumulative number of failures through configuration i, Ki, is the sum of the Mi for all i. 

𝐾𝑖 =  𝑀𝑗  

𝑖

𝑗=1

 

 

The expected value of Ki, E Ki , is the expected number of failures by the end of configuration i.  

Applying the learning curve property to E Ki  implies 

E K1 = λTi
β
. 

 

Let the probability of failure for configuration one be f1.  The expected number of failures by the 

end of configuration one is then 

E K1 = λT1
β

= f1N1 ⇒ f1 =
λT1

β

N1
. 

 

The expected number of failures by the end of configuration two is the sum of the expected 

number of failures in configuration one and the expected number of failures in configuration 

two.  This implies 

E K2 = λT2
β

= f1N1 + f2N2 = λTi
β

+ f2N2 ⇒ f2 =
λT2

β
−λT1

β

N2
. 

 

By inductive reasoning, a generalized equation for the failure probability, fi, on a configuration 

basis is then 

fi =
λTi

β
−λTi−1

β

N i
. 

 

For the special case where Ni = 1 for all i, fi becomes a smooth curve, gi.  The probability of 

failure for trial by trial data is 

gi = λiβ − λ i − 1 β , 
 

where i represents the trial number.  Using fi , the reliability (probability of success) for the i-th 

configuration is then 

ii fR  1 , 

and using gi , the reliability for the i-th trial is 
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ii gR  1 . 

The equations fi, gi, 1-fi, and 1-gi are the exact model equations for tracking the reliability growth 

of discrete data using the AMSAA RGTMD. 

 

6.2.4.7 Estimation Procedures for the Option for Grouped Data.   This section describes 

procedures for estimating the parameters and an approximation equation for calculating 

reliability LCBs. 

 

The MLEs for  and  allow for point estimates for the probability of failure: 
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and the probability of success (reliability): 

                                          R i= 1 - f i                        

for each configuration i. 

 

6.2.4.8 Point Estimation.   

Let  ˆ and ˆ  be the MLEs for  and  respectively, i.e. let      ,  ˆ  ,ˆ   such that (, ) 

maximizes the discrete model likelihood function over the region 0  Ri  1 for i = 1, …, K.  Let 

iR̂  denote the corresponding estimate of Ri.  If  0 < R i < 1 for i = 1, …, K then the point 

    ˆ  ,ˆ ,    satisfies the following likelihood equations: 
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It is recommended that the MLEs be used only for this case.  Situations can occur when the 

likelihood is maximized at a point   ˆ, ˆ  such that R̂ 1 = 0 and   ˆ, ˆ  does not satisfy the above 

equations.  One such case occurs for the trial-by-trial model when a failure occurs on the first 

trial.   To use the model in such an instance, either (1) initialize the model so that at least the first 

trial is a success or (2) use the grouped version and initialize with a group that contains at least 

one success.  This should typically produce maximizing values  ˆ ,ˆ  that satisfy the above 

equations with  0 < R i < 1 for i = 1, … K.  Procedure (1) is especially appropriate if 

performance problems associated with an early design cause the initial failure(s).  Since the 

assessment of the achieved reliability will depend on the model initialization and groupings, the 

basis for the utilized data and groupings should be considered part of the assessment.  A 

goodness-of-fit test, such as the chi-squared test, should be used to explore whether the model 

provides a reasonable fit to the data and groupings.  If there are insufficient failure data to 

perform such a test, a binomial point estimate and LCB based on the total number of successes 
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and trials would provide a conservative assessment of the achieved reliability RK under the 

assumption that RK  Ri for i = 1, …, K. 

 

The data requirements for using the model include: 

 

1. K number of configurations (or the final configuration) 

2. 
iM  number of observed failures for configuration i 

3. 
iN  number of trials for configuration i 

4. 
iT  cumulative number of trials through configuration i 

 

6.2.4.8.1 Interval Estimation.    
A one-sided interval estimate LCB for the reliability of the final (last) configuration may be 

obtained from the approximation equation 
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where 

LCB
 = an approximate LCB at the gamma () confidence level for the reliability of the last 

configuration, where  is a decimal number in the interval (0,1) 

KR̂ = a maximum likelihood estimate for the reliability of the last configuration 

N  = the total number of observed failures (summed) over all configurations i, (i = 1,..,K) 

  ,n2

2  = the gamma percentile point of the chi-squared distribution with n+2 degrees of freedom 

 

6.2.4.8.2 Goodness-of-Fit.    
Provided there is sufficient data to obtain at least five expected number of failures per group, a 

chi-squared goodness-of-fit test may be used to test the null hypothesis that the AMSAA 

RGTMD adequately represents a set of grouped discrete data or a set of trial by trial data.  If 

these conditions are met, then the chi-squared goodness-of-fit procedures outlined previously 

may be used. 

 

Again, an average failure rate plot or a superimposed expected failure rate plot should be 

constructed to provide a graphic description of test results as a part of the reliability analysis. 

 

6.2.4.9 AMSAA RGTMD Example Using Grouped Data.    
The following example is an application of the grouped data option of the AMSAA RGTMD for 

a system having four configurations of development test data.  See Table IX. 
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TABLE IX. Test data for grouped option. 

Configuration 

Number, i 

(K = 4) 

Observed Number 

of Failures in 

Configuration i 

iM  

Number of Trials 

in Configuration i 

iN  

Cumulative 

Number of Trials 

Through 

Configuration i 

iT  
1 5 14 14 

2 3 19 33 

3 4 15 48 

4 4 20 68 

 

 

This is represented graphically as: 

 

 

           (M1 = 5)                  (M2 = 3)                   (M3 = 4)                          (M4 = 4) 

________________________________________________________________________ 

0                            14                            33                               48                                           68 

          (N1 = 14)                  (N2 = 19)                 (N3 = 15)                         (N4 = 20) 

                              T1                            T2                                 T3                                     T4 

 

 

The MLEs for  and  are 0.595 and 0.780, respectively.  Results are presented in Table X. 

 

 

TABLE X. Estimated failure rate and estimated reliability by configuration 

 

Configuration 

Number, i 

(K = 4) 

Estimated Failure 

Probability for 

Configuration i 

if̂  

 

Estimated Reliability for 

Configuration i 

iR̂
 

1 .333 .667 

2 .234 .766 

3 .206 .794 

4 .190 .810 

 

 

A plot of the estimated failure rate by configuration is shown in Figure 37. 
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FIGURE 37.   Estimated Failure Rate by Configuration. 

           
A plot of the estimated reliability by configuration is shown in Figure 38. 
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FIGURE 38.   Estimated Reliability by Configuration. 
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Table XI presents approximate LCBs for the reliability of the last configuration. 

 

  

TABLE XI. Approximate lower confidence bounds (LCBs) for final configuration. 

 

Confidence Level LCB 

0.50 0.806 

0.75 0.783 

0.80 0.777 

0.90 0.761 

0.95 0.747 

 

6.2.5  Subsystem Level Tracking Model (SSTRACK). 

SSTRACK is a tool for assessing system level reliability from lower level test results.  The 

methodology was developed to make greater use of component or subsystem test data in 

estimating system reliability.  By representing the system as a series of independent subsystems, 

the methodology permits an assessment of the system level demonstrated reliability at a given 

confidence level from the subsystem test data.  This system level assessment is permissible 

provided the: 

a) Subsystem test conditions/usage are in conformance with the proposed system level 

operational environment as embodied in the OMS/MP; 

b) Failure Definitions/Scoring Criteria (FD/SC) formulated for each subsystem are 

consistent with the FD/SC used for system level test evaluation; 

c) Subsystem configuration changes are well documented; and 

d) High risk interfaces are identified and addressed through joint subsystem testing. 

 

6.2.5.1 Purpose.    
The purpose of SSTRACK is to assess system level reliability from the use of component, or 

subsystem, test data.  SSTRACK is a continuous model, but it may be used with discrete data if 

the number of trials is large and the probability of failure is small. 

 

 

6.2.5.2 Assumptions.   
The assumptions associated with SSTRACK include:  

a) subsystem test duration is continuous; 

b) the system can be represented as a series of independent subsystems; and  

c) for each growth subsystem, the reliability improvement is in accordance with a NHPP 

with power law mean value function. 

 

6.2.5.3 Limitations.    
The limitations associated with SSTRACK include:  

a) the model will not fit the test data if large jumps in reliability occur as a result of the    

applied corrective action implementation strategy;  

b) the model will be inaccurate if the testing does not adequately reflect the OMS/MP;  
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c) if a significant number of non-tactical fixes are implemented, the growth rate and 

associated system reliability will be correspondingly inflated as a result; 

d) with respect to contributing to the reliability growth of the system, the model does not 

take into account reliability improvements due to delayed corrective actions; and 

e) the model does not address reliability problems associated with subsystem interfaces, so 

high-risk subsystem interfaces should be identified and addressed through joint 

subsystem testing. 

 

6.2.5.4 Benefits.    
The benefits associated with SSTRACK include:  

a) can provide statistical point estimates and approximate confidence intervals on system 

reliability based on subsystem test data;  

b) can accommodate a mixture of growth and non-growth subsystem test data;  

c) can perform goodness-of-fit test for the NHPP subsystem assumptions; 

d) it may allow for reduced system level testing by combining lower level subsystem test 

results in such a manner that system reliability may be demonstrated with confidence; 

and 

e) it may allow for an assessment of the degree of subsystem test contribution toward 

demonstrating a system reliability requirement. 

 

6.2.5.5 Basis for the Model. 

The SSTRACK methodology supports a mix of test data from growth and non-growth 

subsystems.  Statistical goodness-of-fit procedures are used for assessing model applicability for 

growth subsystem test data.  For non-growth subsystems, the model uses fixed configuration test 

data in the form of the total test time and the total number of failures.  The model applies the 

Lindström-Madden method for combining the test data from the individual subsystems.  

SSTRACK is a continuous model, but it may be used with discrete data if the number of trials is 

large and the probability of failure is small. 

 

6.2.5.6 Methodology.  
To be able to handle a mix of test data from growth and non-growth subsystems, the 

methodology converts all growth subsystem test data to its ―equivalent‖ amount of 

demonstration test time and ―equivalent‖ number of demonstration failures.  This allows all 

subsystem results to be expressed in a common format in terms of fixed configuration (non-

growth) test data.  By treating growth subsystem test data this way, a standard LCB formula for 

fixed configuration test data may be used to compute an approximate system reliability LCB for 

the combination of growth and non-growth data.  The net effect of this conversion process is that 

it reduces all growth subsystem test data to ―equivalent‖ demonstration test data while preserving 

the following two important equivalency properties: 

 

The ―equivalent‖ demonstration data estimators and the growth data estimators must yield:  

a) the same subsystem MTBF point estimate; and 

b) the same subsystem MTBF LCB. 

 

In other words, the methodology maintains the following relationships, respectively: 

GD MM ˆˆ 
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Reducing growth subsystem test data to ―equivalent‖ demonstration test data using the following 

equations closely satisfies the relationships cited above: 

2

G

D

N
N 

 

̂22
ˆ GG

GD

TN
MT 

. 

The growth estimate for the MTBF, GM̂ , and the estimate for the growth parameter, ̂ , are 

described in the sections on point estimation for the AMSAA RGTMC.   

 

To compute an approximate LCB for the system MTBF from subsystem demonstration and 

―equivalent‖ demonstration data, SSTRACK uses an adaptation of the Lindström-Madden 

method by computing the following four estimates: 

a) the equivalent amount of system level demonstration test time, which is a reflection of 

the least tested subsystem because it is the minimum demonstration test time of all the 

subsystems; 

b) the current system failure rate, which is the sum of the estimated failure rate from each 

subsystem i, i = 1,...,K; 

c) the ―equivalent‖ number of system level demonstration failures, which is the product of 

the previous two estimates; and 

d) the approximate LCB for the system MTBF at a given confidence level, which is a 

function of the equivalent amount of system level demonstration test time and the 

equivalent number of system level demonstration failures. 

 

In equation form, these system level estimates are, respectively: 
KiforTT iDsysD ..1min ,, 

 





K

i

isys

1

ˆˆ 
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6.2.5.7 SSTRACK Example.    
This example is an application of SSTRACK to a system composed of three subsystems: one 

non-growth and two growth subsystems.  Besides showing that SSTRACK can be used for test 

data gathered from dissimilar sources (namely, non-growth and growth subsystems), this 

particular example was chosen to show that system level reliability estimates are influenced by: 

a) the least tested subsystem; and 

b) the least reliable subsystem  (the subsystem with the largest failure rate). 

 

In this example, Subsystem 1 is a non-growth subsystem consisting of fixed configuration data 

of 8,000 hours of test time and 2 observed failures. 

 

Subsystem 2 is a growth subsystem with individual failure time data.  In 900 hours of test time, 

there were 27 observed failures occurring at the following cumulative times:  7.8, 49.5, 49.5, 

51.0, 64.2, 87.3, 99.9, 169.5, 189.3, 211.8, 219.0, 233.1, 281.7, 286.5, 294.3, 303.3, 396.0, 426.6, 

443.1, 447.0, 501.6, 572.1, 579.0, 596.1, 755.7, 847.5, and 858.3. 

 

Subsystem 3 is also a growth subsystem with individual failure time data.  In 400 hours of test 

time, there were 16 observed failures occurring at the following cumulative times:  15.04, 25.26, 

47.46, 53.96, 56.42, 99.57, 100.31, 111.99, 125.48, 133.43, 192.66, 249.15, 285.01, 379.43, 

388.97, and 395.25. 

 

Table XII shows the pertinent statistics for each subsystem i.  It is here that all growth (G) 

subsystem test data are reduced to equivalent demonstration (D) test data. 

 

TABLE XII. Subsystem statistics. 

Statistics 

(i = 1,2,3) 

Subsystem 1 

(Non-growth) 

Subsystem 2 

(Growth) 

Subsystem 3 

(Growth) 

iGT ,  N/A 900 400 

iGN ,  N/A 27 16 

iGM ,
ˆ

 
N/A 46.53 31.37 

N
N

D i

G i

,

,


2  

2 13.5 8 

iDiGiD NMT ,,,
ˆ 

 
8000 628.19 250.95 

iD

iD

iGiD
N

T
MM

,

,

,,
ˆˆ 

 

 

4000                    

 

46.53 

 

31.37 

iD

i
M ,
ˆ

1
ˆ 

 

 

2.50 x 10
-4

 

 

2.149 x 10
-2

 

 

3.188 x 10
-2

 

 

 

System level statistics are computed by applying the Lindström-Madden method to the 

equivalent demonstration data from each subsystem. 
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Table XIII illustrates approximate LCBs for the system reliability (MTBF) for a range of 

confidence levels. 

 

TABLE XIII. System approximate LCBs. 

Confidence Level 

(in percent) 

 

LCB for System MTBF 

50 17.77 

55 17.19 

60 16.62 

65 16.07 

70 15.51 

75 14.93 

80 14.32 

85 13.66 

90 12.87 

95 11.82 

98 10.78 

99 10.15 

 

 

There may be cases when not all subsystems function throughout the mission.  That is, the 

OMS/MP may specify that some (or all) subsystems function only a specific percent of the 

system operating time.  In this situation, the term wi, subsystem i utilization factor (weight) is  

introduced, where 0<wi≤ 1 .  The following adjustments are made to the Lindström-Madden 

method: 

    

TD,SYS  = min
TD ,i

w i
 (i = 1,∙∙∙,K) 

ρ SYS =  wi
K
i=1 ρ i. 

 

  
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  95 . 250 min 3 , 2 , 1 , ,   
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For this example, all wi = 1, so the results above apply.  If, however, w1 = w2 = 1, and w3 = 0.6, 

then  

 

TD,SYS = min 
TD ,i

w i
  i = 1,2,3  = min(8000, 628.19, 418.25) 

= 418.25 

ρ SYS = 0.040868 
 

M D,SYS = 24.6 

 

    ND,SYS = TD,SYS× ρ SYS = 17.9 

 

    LCB.80 = 
2×TD ,SYS

2N D ,SYS 2,0.80
2 =

836.5

37.8
= 22.13  

  

So, the reduction of operating time for Subsystem 3 results in an increase in MTBF from 18.7 to 

24.6 (not unexpected), but the increase in equivalent system test time, TD,SYS, from 251 to 418 

results in an increase in the degrees of freedom from 29 to 37.8.  Subsystem 3 previously had the 

least reliability, but now Subsystem 2 has the larger contribution to system unreliability.  Note 

that the increase in degrees of freedom results in a more narrow spread between M SYS  and 

LCB0.80 - from 4.4 to 2.5 – which is a significant reduction. 

 

One lesson to learn from the above examples is to comprehend the entire process. This includes 

understanding how the system works, the system requirements, the impact that the percentages 

of time the subsystems operate relative to the system operation has on system reliability, and 

how to test items and subsystems in order to maximize utility of information and resources. 

Merely looking at system level testing and overall system numbers is not enough. 

 

6.3 Reliability Growth Projection. 

 

6.3.1 Introduction.    
The basic objective of reliability growth projection is to obtain an estimate of the reliability at a 

current or future milestone based on Management Strategy, planned and/or implemented 

corrective actions, assessed fix effectiveness, and the statistical estimate of B- mode rates of 

occurrence.  One would then analyze the sensitivity of reliability projection to program planning 

parameters (e.g., FEF, etc) and determine the maturity of the system or subsystem based on 

maturity metrics such as MTBF, rate of occurrence of B-modes, or percent of B-mode initial 

failure rate surfaced.   

 

The reliability growth process applied to a complex system undergoing development involves 

surfacing failure modes, analyzing the modes, and implementing corrective actions to the 

surfaced modes.  In such a manner, the system configuration is matured with respect to 

reliability.  The rate of improvement in reliability is determined by (1) the on-going rate at which 

new failure modes are being surfaced; (2) the effectiveness and timeliness of the corrective 

actions; and (3) the set of failure modes that are addressed via corrective actions. 
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During testing, failure modes are identified and corrective actions incorporated in testing and/or 

delayed to the end of the test phase.  The delayed corrective actions are usually incorporated as a 

group during a designated corrective action period (CAP) and the result is generally a distinct 

jump in the system reliability.  A projection model estimates this jump in reliability due to the 

delayed fixes, called a ―projection.‖  These models do not simply extrapolate the tracking curve 

beyond the current test phase, which would require that the test conditions do not change and 

that the level of activities promoting reliability growth remain constant, e.g., growth rate, . 

 

Although there are no hard and fast rules, one needs to surface enough distinct B-modes to allow 

for statistical estimation of the rate of occurrence of B-modes.  That is, there must be enough B-

modes so that the graph of the cumulative number of B-modes versus test time appears regular 

enough and in conformance with the projection model’s assumed mean value function so that 

parameters of this function can be statistically estimated.  As suggested throughout this 

handbook, plotting the cumulative number of observed B-modes verses test time is helpful to 

obtain a visual comparison of the observed trend.  It is also suggested that goodness-of-fit 

methods be employed. 

 

Another situation in which a projection can be useful is in assessing the plausibility of meeting 

future reliability milestones, i.e., milestones beyond the commencement of the follow-on test.   

 

6.3.1.1 Reliability Growth Projection Models Covered.     
The reliability growth projection models presented in this handbook include:  

 

a) AMSAA-Crow Projection Model (ACPM);  

b) Crow Extended Reliability Projection Model;  

c) AMSAA Maturity Projection Model (AMPM);  

d) AMSAA Maturity Projection Model Based on Stein Estimation (AMPM-Stein); and  

e) Discrete Projection Model (DPM).   

 

Models a) and b) utilize the power law approach, whereas models c), d), and e) utilize the 

AMPM approach.   

 

6.3.1.2 Basic Projection Approaches Covered. 

There are two basic projection approaches presented, one based on the power law model, the 

other based on AMPM.   

 

6.3.1.2.1 The Power Law Approach 

For the power law approach, the ACPM assumes corrective actions are delayed, but 

implemented prior to the next test phase.  The Crow Extended Reliability Projection Model was 

developed wherein both delayed and non-delayed fixes are permitted.  These projection models 

may be used to determine reliability ―potential‖ by sensitizing on FEFs.   

 

6.3.1.2.2 The AMSAA Maturity Projection Model (AMPM) Approach. 

The AMPM is based on the approach of viewing B-failure mode rates  as a 

realization of a random sample ∧= (∧1, … ,∧𝐾) from the gamma distribution, .  Failure 

mode first occurrence failure times conditioned on the i are assumed to be independent 

 K ,,1 

  ,
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exponentials with means i for i = 1,…, K.  This allows one to utilize all the B-mode times to 

first occurrence observed during Test Phase I to estimate the gamma parameters - . 

 

For the ACPM, a projection applies to the test-find-test management strategy where all fixes are 

implemented at the end of test.  The Crow Extended Reliability Projection Model applies to the 

test-fix-find-test management strategy wherein some fixes may be implemented in testing and 

the remaining at the conclusion of testing.  In order to provide the assessment and management 

metric structure for corrective actions during and after a test, two types of B-modes are defined –   

BC failure modes (corrected during test) and BD failure modes (delayed until the end of the test).   

 

6.3.1.3 Benefits. 

The benefits of reliability growth projection include: 

a) Assesses reliability improvements due to surfaced failure modes and corrective 

actions; 

b) Provides important maturity metrics 

i. Projections of MTBF 

ii. Rate of occurrence of new B-modes 

iii. Percent surfaced of B-mode initial failure rate; 

c) Projects expected number of new B-modes during additional testing; 

d) Assesses system reliability growth potential; and 

e) Quantifies impact of successful corrective actions and overall engineering and 

management strategy. 

 

6.3.1.4 Key Assumptions. 

Key assumptions for reliability growth projection include: 

a) At the start of test, there is a large unknown constant number, denoted by K, of potential 

B-modes that reside in the system (which could be a complex subsystem); 

b) Failure modes (both A-modes and B-modes) occur independently; 

c) Each occurrence of a failure mode results in a system failure; and 

d) No new modes are introduced by attempted fixes. 

 

6.3.1.5 Considerations. 

When applying a reliability growth projection model, it is important to note whether the 

estimation procedure for the system failure intensity (rate of occurrence of failures) is only valid 

when all the corrective actions to surfaced failure modes are delayed to the end of the test phase. 

Such a fix implementation strategy ensures that the initial B-mode failure rates, i , are constant 

over the test phase.  Such a i  can be estimated by simply dividing the test phase duration into 

the number of failures attributed to mode i.  When this is not the case (because a corrective 

action is implemented for mode i prior to the conclusion of the test phase), the projection model 

estimation procedure must not rely on such as estimate for i .  In such instances, projection 

methodology that depends on the i remaining constant during the test phase should not be used.   

 

Database considerations for projection methodology include: 

a) Failure mode classification; 

b) Test exposure (i.e. land, water, etc.); 

c) Configuration control; and 

 ,
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d) Engineering assessments of fix effectiveness. 

 

Data Requirements for Projection analysis include: 

a) First occurrence time for each distinct correctable failure mode; 

b) Occurrence time for each repeat of a distinct correctable failure mode; 

c) Number of non-correctable failures; 

d) FEF for each correctable failure mode or the average over all; and 

e) Total test duration  

Note that the Crow Extended Reliability Projection Model has additional data requirements.  

 

6.3.2 AMSAA-Crow Projection Model (ACPM). 

This model considers the case where all corrective actions to surfaced B-modes are implemented 

at the end of the current test phase, prior to commencing a follow-on test phase.  Thus all fixes 

are delayed, making it a test-find-test strategy.  The current test phase will be referred to as Phase 

I and the follow-on test phase as Phase II. 

 

6.3.2.1 Purpose.    
The purpose of ACPM is to estimate the system reliability at the beginning of a follow-on test 

phase by taking into consideration the reliability improvement from delayed fixes. 

 

6.3.2.2 Assumptions.   
The assumptions associated with ACPM include: 

a) Test duration is continuous;  

b) Corrective actions are implemented as delayed fixes at the end of the test phase; 

c) Failure modes can be categorized as either A-modes and B-modes;  

d) Failure modes occur independently and cause system failure;  

e) There are a large number of potential B-modes;  

f) The number of B-modes surfaced can be approximated by a NHPP with power law mean 

value function;  

g) The time to first occurrence is exponentially distributed for each failure mode; 

h) The number of A-mode failures by test duration t conforms to a homogeneous Poisson 

process over the test phase; and 

i) The number of B-mode failures by test duration t conforms to a homogenous Poisson 

process over the test phase. 

 

6.3.2.3 Limitations.   
The limitations associated with ACPM include:  

a) All corrective actions must be delayed;  

b) FEFs are often a subjective input; and 

c) Projection accuracy can be degraded via reclassification of A-modes to B-modes.  

 

6.3.2.4 Benefits.    
The benefits associated with ACPM include:  

a) The ability to project the impact of delayed corrective actions on system reliability; and  

b) The projection takes into account the contribution to the system failure intensity due to 

unobserved B-failure modes. 
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6.3.2.5 Overview of ACPM Approach. 

The ACPM and associated parameter estimation procedure was developed to assess the 

reliability impact of a group of delayed fixes.  In particular, the model and estimation procedure 

allows assessment of what the system failure intensity will be at the start of Phase II after 

implementation of the delayed fixes.  Denoting this failure intensity by r(T), where T denotes the 

duration of Phase I, the ACPM assessment of r(T) is based on: (1) the A and B-mode failure data 

generated during Phase I test duration, T; and (2) assessments of the FEFs for the B-modes 

surfaced during Phase I.  Since the assessments of the FEFs are often largely based on 

engineering judgment, the resulting assessment,  Tr̂ , of the system failure intensity after 

corrective action implementations is called a reliability projection (as opposed to a demonstrated 

assessment, which would be based solely on test data). 

  

The ACPM and estimation procedure was motivated by the desire to replace the widely used 

―adjustment procedure.‖  The adjustment procedure assesses r(T) based on reducing the number 

of failures, 
iN  , due to B-mode i during Phase I to 

ii Nd 









 *1

, where 
*

id  is the assessment of 

the realized FEF for mode i, denoted by
id .  Note   ii Nd *1  is an assessment of the expected 

number of failures due to B-mode i that would occur in a follow-on test of the same duration as 

Phase I.  The adjustment procedure assesses r(T) by  Tradj
ˆ , where 

 
T
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obsi

i

A

adj


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ˆ
 

 

In this equation, obs is the index set for all the B-modes that occur during Test Phase I. 

 

6.3.2.6 Methodology.    
The ACPM assesses the value of the system failure intensity, r(T), after implementation of the 

Phase I delayed fixes.  This assessment is taken to be an estimate of the expected value of r(T), 

i.e., an estimate of 𝜌𝐶 𝑇 = 𝐸 𝑟 𝑇  .  Crow proposed an approximation for the ACPM approach 

which can be expressed as 

𝜌𝐶 𝑇 = 𝜆𝐴 +  



K

i

iid
1

1  +𝜇_𝑑 ∙  ℎ𝐶(𝑇) 

where the first two terms are equivalent to r adj  T  above. 

 

In this expression, A denotes the assumed constant A-mode failure rate, i denotes the initial B-

mode failure rate for mode  i, d is the assumed common mean of all the FEFs when considered 

as random variables for the K B-modes, and di denotes the realized value of the achieved FEF for 

mode i if mode i is surfaced.  The function hC(T) represents the rate of occurrence of new B-

modes at the end of the test phase. 

     

Based on an empirical study, Crow states that the number of distinct B-modes surfaced over a 

test period  t,0  can often be approximated by a power function of the form 
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   ttc   0, for  

This function is interpreted as the expected number of distinct B-modes surfaced during the test 

interval  t,0 .  More specifically, it assumes the number of distinct B-modes occurring over  t,0  

is governed by a NHPP with  tc  as the mean value function.  Thus 

 
  1 


t

td

td
th c

c

 
represents the expected rate at which new B-modes are occurring at test time t. 

 

For estimating  Tc , the first term in the expression 
A  is constant over [0,T] and is estimated 

by 

T

N A

A ̂
 

where 
AN  is the number of A-mode failures over [0,T].   

 

Based on the assumption that all fixes are delayed until Phase I is complete, the failure rate for 

B-mode i  remains constant over [0,T] and is estimated by 

 Ki
T

N i

i ,,1ˆ   

where 
iN  denotes the number of failures during [0,T] attributable to B-mode i.  Note 

   
i

ii

i
T

T
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E 


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The next step to complete the assessment of the expected system failure intensity after 

incorporation of delayed fixes is to address the rate of occurrence of new B-modes at T, 

hc T = λβTβ−1.  The data required to estimate  and  are: (1) the number of distinct B-modes, 

m, that occur during [0,T]; and (2) the B-mode first occurrence times Tttt m  210 .  

The maximum likelihood estimates of  and , denoted by 
^

  and 
^

  respectively, satisfy the 

following equations: 

mT 
ˆˆ
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Solving for ̂  in the above, the estimate for  Thc
 can be written in terms of m  and ̂  as 

follows: 

  1ˆ

ˆ

1ˆ ˆˆˆˆ 








 



  T
T

m
TThc

T

m ̂
  

Crow notes that conditioned on the observed number of distinct B-modes, m , i.e.   mTM  , 

the estimator 
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2ˆ1








 
 m

m

m
m 

 
is an unbiased estimator of , i.e. 

   mE
 

Thus estimating   1  TThc  by using m  leads to the estimate 

 
T

m
Th m

c




 
To complete the assessment of the system failure intensity, it is necessary to assess the ACPM 

expected system failure intensity  Tc  

     ThdT cd

K

i

iiAc   
1

1

 

Based on 
^

 and since 0iN  for obsi  

   








 
 obsi

i

obsi

iiAc dNdN
T

T ** ˆ1
1

ˆ 

 
For  Tc  based on m  (provided 2m ): 

   








 
 obsi

imi

obsi

iAc dNdN
T

T **1
1



 
Note both estimates of  Tc  are of the form 

   








 
obsi

ic destimateN
T

TEstimate **1


 
where *N  is the ―adjusted‖ number of failures over [0,T].  Recall the historically used adjustment 

procedure assessment for the system failure intensity, after incorporation of delayed fixes, is 

given by  
T

N
Tradj

*

ˆ  .  Also recall  ˆˆ1








 


m

m
m .  Thus  

     TTTr ccadj  ˆˆ 
 

 

Also of interest is an assessment of the reciprocal of  Tc , i.e. Mc      1
 TT c .  For 

Mc(T),  

       1
ˆMM̂


 TrTT adjcc  

 

6.3.2.7  Reliability Growth Potential.    
The expected system failure intensity after incorporation of the delayed fixes decreases to a 

limiting value as T .   This value is termed the failure intensity growth potential and is 

denoted by 
GP .  It is given by 𝜌𝐺𝑃 = lim𝑇→∞ 𝜌𝐶 𝑇 = 𝐴+ (1 − 𝑑𝑖 

𝐾
𝑖=1 ) 𝑖 

 

Its reciprocal is referred to as the MTBF growth potential, which represents a theoretical upper 

limit on the system MTBF.  This limit corresponds to the MTBF that would result if all B-mode 

failures were surfaced and corrected with specified FEFs.  Note that 
GP  is estimated by 
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  







 

obsi

iiAGP NdN
T

*1
1

̂

 

If the reciprocal   1
ˆ



GP  lies below the goal MTBF, then this may indicate that achieving the 

goal is high risk. 

 

6.3.2.8 ACPM Example.   
The following example illustrates application of the ACPM.  Data was generated by a computer 

simulation with 02.0A , 1.0B , 100K  and the 
id ’s distributed according to a beta 

distribution with mean 0.7.  The simulation portrayed a system tested for 400T  hours.  The 

simulation generated 42N  failures, with 10AN  and 32BN .  The 32 B-mode failures were 

due to M=16 distinct B-modes.   

 

The B-modes are labeled by the index i.  The first occurrence time for mode i is 
it  and 

.4000 1621  Tttt    

 

For each B-mode i, Column 2 in TABLE XIV lists the time of first occurrence, followed by the 

times of subsequent occurrences (if any).  Column 3 lists
iN , the total number of occurrences of 

B-mode i during the test period.  Column 4 contains the assessed FEFs for each of the observed 

B-modes.  Column 5 has the assessed expected number of type i B-mode failures that would 

occur in T = 400 hours after implementation of the corrective action.  Finally, the last column 

contains the base e logarithms of the B-mode first occurrence times.  These are used to 

calculate ̂ . 



                                                            MIL-HDBK-189C  

107 

 

 

TABLE XIV. ACPM example data. 

B-mode Failure Times (hrs) iN
 

*

id
 

  ii Nd *1
 

itln
 

1 15.04, 254.99 2 .67 .66 2.7107 

2 25.26, 120.89, 366.27 3 .72 .84 3.2292 

3 47.46, 350.2 2 .77 .46 3.8599 

4 53.96, 315.42 2 .77 .46 3.9882 

5 56.42, 72.09, 339.97 3 .87 .39 4.0328 

6 99.57, 274.71 2 .92 .16 4.6009 

7 100.31 1 .50 .50 4.6083 

8 111.99, 263.47, 373.03 3 .85 .45 4.7184 

9 125.48, 164.66, 303.98 3 .89 .33 4.8321 

10 133.43, 177.38, 324.95, 364.63 4 .74 1.04 4.8936 

11 192.66 1 .70 .30 5.2609 

12 249.15, 324.47 2 .63 .74 5.5181 

13 285.01 1 .64 .36 5.6525 

14 379.43 1 .72 .28 5.9387 

15 388.97 1 .69 .31 5.9635 

16 395.25 1 .46 .54 5.9795 

Totals  32 11.54 7.82 75.7873 

 

 

From Table XIV above, the adjustment procedure estimate of r(T) = r(400) is 

    
















 



16

1

*1
400

1
400ˆ

i

iiAadj NdNr

 

04455.0
400

82.710





 
Thus the adjustment procedure estimate of the system MTBF is 

   45.22
82.17

400
400ˆ

1




adjr
 

 

As shown in the equation below, the adjustment procedure estimate of system failure intensity 

after implementation of the fixes is simply 
GP̂ , the estimated growth potential failure intensity.  

Thus 

  04455.0400ˆˆ  adjGP r
 

 

Also, the estimate of the system MTBF growth potential is 

   45.22400ˆˆ
11




adjGP r
 

 

To obtain an estimate with less bias of the system’s failure intensity and corresponding MTBF at 

T=400 hours, after incorporation of fixes to the 16 surfaced B-modes, the ACPM estimation 

equation is used.  This projection is given by 
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  

















obsi

iGPc d *

400

ˆ
ˆ400ˆ


  54.11

400

ˆ
04455.0

















   

The MLE ̂  is  

    




















m

i

i

m

i i

tTm

m

t

T

m

11

lnlnln

̂  

    7970.0
7873.75400ln16

16



  

Thus, the ACPM projection for the system failure intensity, based on ̂ , is 

       54.11
400

7970.0
04455.0400ˆ 








c  

     06754.0  

The corresponding MTBF projection is 

       81.14400ˆ
1




c  

 

A nearly unbiased assessment of the system failure intensity, for ii dd *
, can be obtained by 

using m  instead of ̂  , thus  

      7472.07970.0
16

15ˆ1

















 
 

m

m
m  

and the projected system failure intensity based on m  is 

      



obsi

i

m

GPc d
T

*ˆ400


  

      54.11
400

7472.0
04455.0 








  

     06611.0  

The corresponding MTBF projection is 

       13.15400
1




c  

It is well known that an unbiased estimator for a model parameter 𝜌 is typically biased for 

estimating the reciprocal of 𝜌.   In particular, the fact that  which uses  is almost 

unbiased for estimating of 𝜌𝐶 𝑇  does not imply that 𝑀𝐶 𝑇 =  {𝜌𝐶   𝑇 }-1 
 should be estimated 

by 𝑀 𝐶 𝑇 .   In fact the discussion in Section 4.3.5 of the (Broemm, Ellner and Woodworth Sep 

2000) suggests that  𝑀 𝐶 𝑇  based on ̂   is a better estimator of 𝑀𝐶 𝑇  than 𝑀 𝐶 𝑇 .   Thus, in this 

example it is recommended that the projected system failure intensity is assessed by 

  06611.0400 c , and the projected system MTBF by    81.14400ˆ
1




c . 

 

6.3.2.9 Goodness-of-Fit for ACPM based on B-Mode First Occurrence Times.   

To visually assess whether the B-mode first occurrence time pattern conforms to the ACPM 

mean value function 𝜇𝐶 𝑡 , it is useful to plot the observed number of unique B-modes that 

 Tc m
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occur on or before each of the B-mode first occurrence times.  This realized pattern should be 

visually compared to the graph of 𝜇 𝐶 𝑡  versus t where𝜇 𝐶 𝑡 =   𝑡𝐵 . 
 

Additionally, the fit of  
𝐶
 𝑡  to the observed B-mode first occurrence pattern can be statistically 

assessed via the Cramér-von-Mises statistic considered in Section 6.2.2.8.3 for the tracking 

model.  For application of this statistic 𝐶𝐹  (given in 6.2.2.8.3) to the ACPM simply do the 

following:  (1) Interpret F in the formula as the number of distinct B-modes that occur over the 

test phase duration T;  (2) Interpret 𝑋𝑖  as the first occurrence time of B-mode i where  0 < 𝑋1 ≤

𝑋2 ≤ … ≤ 𝑋𝐹 ≤ 𝑇; and (3) Calculate 𝐵  utilized in the formula for 𝐶𝐹  by setting 𝐵 =   
𝐹−1

𝐹
 𝐵 .   

In this expression, 𝐵  is obtained from the formula given in Section 6.3.2.6 with m=F and  𝑡𝑖  = 

𝑋𝑖 .  Then, as in Section 6.2.2.8.3, reject the null hypothesis that 𝜇𝐶 𝑡  represents the observed B-

mode first occurrence data if the statistic 𝐶𝐹  exceeds the critical value for a chosen significance 

level x. 

     

6.3.2.10 ACPM based for Grouped Data. 

At times it is desirable to apply the ACPM to grouped (interval) data.  For such an application, 

the test phase duration T is subdivided into s disjoint test intervals (𝑧𝑖−1,𝑧𝑖] 
where 0 = 𝑧0 <  𝑧1<  𝑧2< …  𝑧𝑠 = T.  The i

th
 test interval is (𝑧𝑖−1,𝑧𝑖] for i=1,….,s.  It is required 

that s≥3.  The data recorded for each test interval is the number of distinct B-modes, mi, that 

occur in the i
th

 test interval and the test interval duration 𝑧𝑖-𝑧𝑖−1. 

 

Such data naturally occurs if the achieved test duration and number of distinct B-modes that 

occur are collected on a calendar basis, e.g. weekly, over a test period associated with one test 

phase of duration T.  The ACPM assumptions and formulas remain as in Section 6.3.2.  

However, the estimation procedure for the model parameters  and  would change.  The MLEs 

for  and  can be obtained by numerically solving the equation for 𝐵  given in Section 6.2.3.1.1.  

This equation when applied to the grouped data application of the ACPM should be utilized with 

K=s (the number of test intervals), 𝐹𝑖=𝑚𝑖 , and 𝑡𝑖  equal to 𝑧𝑖  (the right end point of the i
th

 test 

interval).  Note  =
𝑚

𝑇𝐵 
 where  𝑚 =  𝑚𝑖

𝑠
𝑖=1 .  The MLE 𝐵  should always be utilized for the 

grouped data application of the ACPM and never 𝐵 .  For this case 𝐵 =  
𝑚

𝑚−1
 𝐵  is not an 

unbiased estimator of . 

 

An important instance that may call for utilizing interval data is when there are one or more key 

system stressors that induce failure modes.  Frequently one is attempting to measure system 

reliability with respect to the mean mission profile (MMP) specified in the OMS/MP.   The 

OMS/MP may identify and quantify key system stressors over several mission profiles and the 

MMP.  For example, the MMP for a tank may specify the duration of a mission measured in 

miles and mission hours.  It may also specify the number of rounds fired from the cannon over 

the mission time or mission miles.  This specified rate of firing is often a key failure mode driver.  

The MMP may further specify the portions of the mission miles associated with traversing 

primary roads, secondary roads, and cross-country terrain along with descriptions of each of 

these categories.  The number of mission miles specified per mission hour and the portion of 

these miles to be realized in each of these categories for the MMP is also frequently a key 

stressor.  The achieved reliability will strongly be influenced by such key failure mode stressors.  
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In the presence of such stressors, it is often useful to utilize interval test data where every key 

stressor is adequately represented in each of the test intervals. 

 

For ease of exposition the test duration will be measured in terms of mission hours.  Mission 

miles could be an appropriate alternative measure in some instances.  As before, let  

 0 = 𝑧0 <  𝑧1<  𝑧2< …  𝑧𝑠 = T define the test intervals (𝑧𝑖−1,𝑧𝑖] for i=1,….,s.  Consider the two 

key stressors discussed above.  These intervals will be termed balance test intervals with regard 

to these two stressors provided the following hold: 

(1)  The number of rounds that one attempts to fire in each interval closely matches the number 

of rounds that the MMP implies would be fired for the tested mission hours in the interval; and 

(2) The number of mission miles traversed and their allocation to the three categories discussed 

above in each test interval closely match the mission miles and the category proportions implied 

by the MMP for the amount of mission test hours accomplished in the test interval.  The use of 

such balanced interval test data with respect to all the identified key stressors in the MMP can 

significantly contribute to more accurate assessments of projected system reliability associated 

with the MMP. 

 

If an assessment of the projected reliability for an individual Mission Profile (MP) specified in 

the OMS/MP is desired, the above considerations still apply but with respect to the identified and 

quantitatively specified key stressors addressed in the OMS/MP for the particular MP of interest. 

 

The concept of utilizing balanced test intervals also applies to tracking curve model assessments.  

The interval data for the tracking curve models (also referred to as grouped data) is discussed in 

Section 6.2.3. 

 

A useful reference for further details regarding balanced test intervals is (Crow 2008).  

 

 

 

6.3.2.11 Goodness-of-Fit for ACPM Applied to Interval Data. 

For interval (grouped) data over a single test phase discussed in Section 6.3.2.10, a chi-squared 

goodness-of-fit test can be conducted to test the null hypothesis H0 that the ACPM adequately 

represents the data.  For this test, the model estimate of the expected number of delayed B-modes 

first discovered in the i
th

 test interval (𝑧𝑖−1,𝑧𝑖] is 𝐸 i ≡  
𝐶
 𝑧𝑖 −  

𝐶
 𝑧𝑖−1 =      𝑧𝑖

𝐵 − 𝑧𝑖−1
𝐵     

 

Where necessary, combine adjacent test intervals so that after combination, each of the 

remaining intervals has a model estimate of at least five for the delayed B-modes first discovered 

in the interval.  Let KR denote the number of such intervals after combining where necessary and 

mi denote the observed number of delayed B-modes first discovered in the resulting interval i for 

i=1,….,KR.  To utilize this goodness-of-fit test, KR must be at least three. 

 

Recalculate the 𝐸 i for the new intervals.  Then the test statistic x
2
 =  

(𝑚 𝑖−𝐸 i  )2

𝐸 i

𝐾𝑅
𝑖=1  is 

approximately distributed as a chi-square random variable with KR-2 degrees of freedom.  The 

null hypothesis is rejected if the x
2
 statistic exceeds the critical value for a chosen significance 

level.  Critical values for this statistic can be found in tables of the chi-square distribution. 
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One should also construct a plot of the cumulative observed number of delayed B-modes versus 

the model estimate of this quantity at the ends of each test interval.  Note the model estimate is 

given by  
𝐶
 𝑧𝑖  for test interval (𝑧𝑖−1,𝑧𝑖] for i=1,….,s.    Also, one can plot on a log-log scale the 

model estimate for the cumulative number of delayed B-modes that occur by 𝑧𝑖  divided by 

𝑧𝑖  versus 𝑧𝑖  for i=1,….,s.  Under the null hypothesis H0 the points (𝑧𝑖 ,
 𝐶 𝑧𝑖 

𝑧𝑖
 ) for i=1,….,s should 

approximately lie on a line with slope –(1-𝐵 ) when plotted using a log-log scale. 

 

 

 

6.3.3 Crow Extended Reliability Projection Model. 

 

6.3.3.1 Introduction. 

The Crow Extended Reliability Projection Model for a test-fix-find-test management strategy 

was developed by Crow (Crow 2004)to address the case where some corrective actions are 

incorporated during test and some corrective actions are delayed and incorporated at the end of 

the test.  This model extends the AMSAA RGTMC for test-fix-test data and the ACPM for test-

find-test data.  That is, these other two models are special cases of the Crow Extended Reliability 

Projection Model. 

 

6.3.3.2 Purpose.     
The purpose of the Crow Extended Reliability Projection Model is to estimate the system 

reliability at the beginning of a follow-on test phase by taking into consideration the reliability 

improvement from fixes incorporated during the test phase and the delayed fixes incorporated at 

the conclusion of the test phase. 

 

6.3.3.3 Assumptions.   
The Crow Extended Reliability Projection Model presented in (Crow 2004) pertains to test data 

from a single test phase.  Test duration is measured on a continuous scale such as time or miles.  

The model subdivides the B-modes into two categories – BC-modes (fixes incorporated during 

the test phase) and BD-modes (fixes delayed until the end of the test phase).  The model assumes 

the following: 

(i)  A-modes and B-modes occur independently and each such occurrence results in a system 

failure; (ii) the number of failures that occur by test duration t, N(t), is a NHPP with power law 

mean value function; (iii) the number of distinct BD-modes that occur by t, MBD(t), is a NHPP 

with power law mean value function (typically having different parameter values than the power 

law governing N(t)); (iv) no new modes are introduced by the corrective actions; (v) the number 

of BD failures that occur by t, NBD(t), is a HPP; and (vi) the number of A failures that occur by t, 

NA(t), is a HPP.  The constant failure intensities for the assumed HPPs NBD(t) and NA(t) are 

denoted by BD and A, respectively. 

 

6.3.3.4 Limitations.   

The Crow Extended Reliability Projection Model  does not explicitly use BC-mode FEFs.  

Utilizing justified FEF values based on solid root cause analysis and credible mitigation 
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solutions can enhance the accuracy of MTBF projections.  However, the use of FEFs not based 

on such analysis and mitigation solutions can significantly degrade assessment accuracy. 

 

The use of the power law to model E(N(t)) can cause difficulties.  Note assuming E(N(t))=t
B
 for 

some ,B>0 implies the system failure intensity S(t) is given by S(t)= Bt
B-1

.  For growth 

during a test phase, 0<B<1.  Thus, for growth, S(t) is a strictly decreasing function such that 

lim𝑡→∞ S(t) = 0.  This can be inconsistent with the assumption that A+BD is a positive 

constant failure intensity that contributes to S(t).  If A+BD is a small enough portion of S(T) 

(where T denotes the test phase duration), then this potential inconsistency may not distort the 

assessment of the projected MTBF (after BC and BD-mode mitigation) significantly.  However, 

clearly problems can be expected if  A+ BD=
𝑁𝐴+𝑁𝐵𝐷

𝑇
 exceeds the tracking assessment  S(T) 

(where NA denotes the number of A-mode failures and NBD denotes the number of BD-mode 

failures, respectively, over the test phase). 

 

6.3.3.5 Benefits.    
The benefits associated with the Crow Extended Reliability Projection Model are the same as 

those for ACPM.  Added capability includes pre-emptive fixes at time T for failure modes that 

have not experienced a failure.  It is assumed that for these failure modes, an estimate of the 

failure rate prior to mitigation is already available, either by analysis, analogy, or other test.  

Details may be found in (Crow 2004). 

 

6.3.3.6 Methodology. 

In order to provide the assessment and management metric structure for corrective actions 

incorporated during and after a test, two types of B-modes are defined:  BC-modes, which are 

corrected during the test phase; and BD-modes, which are delayed until the end of the test phase.  

A-modes are still defined as failure modes that will not receive a corrective action.  These mode 

classifications define the management strategy and can be changed.  Note that the AMSAA 

RGTMC does not utilize this failure mode designation, which is a practical aspect of the Crow 

Extended Reliability Projection Model. 

 

During the test phase, only the corrective actions for BC-modes contribute to reliability growth, 

not the A-modes or the BD-modes.  At the end of the test phase, corrective actions for the BD-

modes are incorporated, and the reliability increases further, typically as a jump.  Estimating this 

increased reliability with test-fix-find-test data is the objective of the Crow Extended Reliability 

Projection Model. 

 

For the Crow Extended Reliability Projection Model, the achieved MTBF (before delayed fixes) 

due to BC corrective actions should be exactly the same as the achieved failure intensity, CA, 

estimated by the AMSAA RGTMC.   

 

 

Let K denote the number of BD-modes residing in the system, BD be the constant failure 

intensity for the BD-modes, and let h(T|BD) be the first occurrence function for the BD-modes 

(the same as h(T) in the ACPM applied to the BD-modes).   

 

The Crow Extended Reliability Projection Model projected failure intensity is  
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    λEM = λCA − λBD +  (1 − di)λi
K
i=1 + 

d
h(T|BD)                          

 

and the projected MTBF is MEM = 1/EM.  This is the MTBF after the incorporation of fixes for 

the BD-modes. 

 

The failure intensity λCA = λS(T) is estimated via the tracking model and λBD  is estimated by 
𝑁𝐵𝐷

𝑇
, 

where T is the duration of the test phase and NBD is the number of BD-failures observed over the 

test phase.  Also, for each BD-mode initial failure rate λ𝑖 , λ 𝑖=
𝑁𝑖

𝑇
 where Ni is the number of 

failures associated with mode i observed over the test phase.  The average FEF 𝜇𝑑  is assessed as 

the arithmetic average of the assessed FEFs di for the observed BD-modes.  The expected rate of 

occurrence of BD-modes at the end of the test phase, h(T/BD), is estimated from the BD-mode 

first occurrence times in the test phase using the ACPM procedure.  More explicitly, 

 ℎ  (𝑇/𝐵𝐷)=   
(𝑚𝐵𝐷   )𝐵 

𝑇
   and  𝛽 =

𝑚𝐵𝐷

 ln  
𝑇

𝑡𝑖  

𝑚𝐵𝐷
𝑖=1

  where 𝑚𝐵𝐷  denotes the number of distinct BD-modes 

observed over the test phase and 𝑡𝑖  denotes the  cumulative first occurrence time for BD-mode i 

as measured from the start of the test phase.  For multiple units under test, 𝑡𝑖  would be the sum of 

the amount of test time accrued by each unit at the time of the first occurrence of BD-mode i on 

one of the units. 

 

Interval failure mode data using balanced test intervals over the test phase can also be utilized as 

described in Section 6.3.2.10.  The data includes the test duration of each test interval and the 

number of distinct BD-modes that first occur during the test phase in a test interval.  The 

estimate of λCA  from the tracking model can also be based on interval failure data as described in 

Section 6.2.3 

 

If it is assumed that no corrective actions are incorporated into the system during the test (no BC-

modes), then this is equivalent to assuming that β = 1 for λCA and λCA is estimated by λ CA = λ A +

λ B .  In general, the assumption of a constant failure intensity  β = 1  can be assessed by a 

statistical test from the data.   

 

In using the Crow Extended Reliability Projection Model, it is important that the classification of 

a B-mode, with respect to the BC and BD categories, not be dependent on when the mode occurs 

during the test phase.  In some testing programs, modes that occur in the early portion of the test 

phase tend to have fixes implemented during the test and are thus classified as BC-modes, while 

those that occur later are not implemented until after the test phase and are thus classified as BD-

modes.  Under such conditions, the pattern of BD-mode first occurrence times will provide an 

inaccurate estimate of the failure intensity due to the unobserved BD-modes.  This, in turn, 

would degrade the accuracy of the MTBF projection. 

 

The Crow Extended Reliability Projection Model is illustrated using the data in TABLE XV, 

where 56 failures due to A, BC, and BD-modes are designated over a test time of T = 400 hours.  

The data in TABLE XV was utilized in (Crow 2004) to illustrate this model.  In the following 

table, TABLE XVI, the BD-mode first occurrences, the frequency of the modes, and the failure 
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mode FEF assessments, di
*
, are given.  Note that the BD-mode data in TABLE XVI is the same 

B-mode data provided in TABLE XIV.     

 

TABLE XV. Crow extended reliability projection model example data 

Failure i Time of 

Occurrence 

Failure 

Mode 

Failure i Time of 

Occurrence 

Failure 

Mode 

1 0.7 BC1 29 192.7 BD11 

2 3.7 BC1 30 213.0 A 

3 13.2 BC1 31 244.8 A 

4 15 BD1 32 249.0 BD12 

5 17.6 BC2 33 250.8 A 

6 25.3 BD2 34 260.1 BD1 

7 47.5 BD3 35 263.5 BD8 

8 54.0 BD4 36 273.1 A 

9 54.5 BC3 37 274.7 BD6 

10 56.4 BD5 38 282.8 BC11 

11 63.6 A 39 285.0 BD13 

12 72.2 BD5 40 304.0 BD9 

13 99.2 BC4 41 315.4 BD4 

14 99.6 BD6 42 317.1 A 

15 100.3 BD7 43 320.6 A 

16 102.5 A 44 324.5 BD12 

17 112.0 BD8 45 324.9 BD10 

18 112.2 BC5 46 342.0 BD5 

19 120.9 BD2 47 350.2 BD3 

20 121.9 BC6 48 355.2 BC12 

21 125.5 BD9 49 364.6 BD10 

22 133.4 BD10 50 364.9 A 

23 151.0 BC7 51 366.3 BD2 

24 163.0 BC8 52 373.0 BD8 

25 164.7 BD9 53 379.4 BD14 

26 174.5 BC9 54 389.0 BD15 

27 177.4 BD10 55 394.9 A 

28 191.6 BC10 56 395.2 BD16 

 

   

Note that in the failure mode designation in TABLE XV, BC-modes are entirely different than 

BD-modes.  For example, failure mode BC-1 is an entirely different failure mode from BD-1, 

although both have the similar sub designation ―1.‖  

 

All occurrences of a given B-failure mode have the same letter designators (BC or BD) and the 

same numerical sub-designation.  For example, the BD-failure mode 2 in TABLE XVI has 

designator BD2 in TABLE XV and appears three times in this table (since N2=3 in TABLE 

XVI). 
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Failure occurrence times that correspond to an A-failure mode (which may not be identifiable in 

test) are simply given the designator ―A‖ in TABLE XV. 

 
 

TABLE XVI. BD Failure mode data and FEFs. 

 

BD Mode j Nj First Occurrence Assessed d∗j  

1 2 15.0 .67 

2 3 25.3 .72 

3 2 47.5 .77 

4 2 54.0 .77 

5 3 56.4 .87 

6 2 99.6 .92 

7 1 100.3 .50 

8 3 112.0 .85 

9 3 125.5 .89 

10 4 133.4 .74 

11 1 192.7 .70 

12 2 249.2 .63 

13 1 285.0 .64 

14 1 379.4 .72 

15 1 389.0 .69 

16 1 395.2 .46 

Total 32  11.54 

  

 

6.3.3.7 AMSAA RGTMC Example Using TABLE XV.   
Suppose a development testing program begins at time 0 and is conducted until time T.  Let N be 

the total number of failures recorded and let 0 < X1, < X2, ⋯ , XN < 𝑇 denote the N successive 

failure times on a cumulative time scale.  Assume that the AMSAA RGTMC NHPP assumption 

applies to this set of data.  Under the AMSAA RGTMC, the MLEs for  and β  are  

 

  λ  =
N

Tβ 
  ,    β =

N

 ln
T

X i

N
i=1 

.     

 

Applying these equations to the 56 failure times in TABLE XV results in the following 

estimates:  

 

λ = 0.2171 and β = 0.9268.  Thus, the estimated growth rate is 1-β =0.0732. 

 

While growth is small, hypothesis testing indicates it is significantly different from 0. Thus 

growth is occurring and the failure intensity is decreasing. 

 

The achieved or demonstrated failure intensity and MTBF at T = 400 are estimated by  
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λ CA = λ β Tβ −1 = 0.1298, and M CA =  λ CA  
-1

 = 7.71. 

 

This indicates that the ―baseline‖ estimate of reliability at T = 400 hours is 7.71 using the 

AMSAA RGTMC.  It is important to note that the AMSAA RGTMC does not assume that all 

failures in the data set receive a corrective action.  Based on the management strategy, some 

failures may receive a corrective action and some may not. 

 

 

6.3.3.8  Crow Extended Reliability Projection Model Example Using TABLE XV.   
For this example, assume that all the failure times Xj are known.   

 

The first term, λ CA , uses all failure time data in TABLE XV and is calculated in the previous 

example using the AMSAA RGTMC.  This gives  

                                                   λ CA = 0.1298.                               

   

For the remaining terms, the FEFs and the BD-mode data given in TABLE XVI are used.  Note 

that the BD-mode data in TABLE XVI is the same as the B-mode data in TABLE XIV, so the 

calculations are the same as previously shown.  That is,  

 

  𝑚𝐵𝐷= 16, T = 400, λ BD = 0.0800,  and the assessment of 𝜇𝑑  is  𝜇𝑑
∗ =0.72.  

Also, 

   (1 − d∗i)
N i

T

𝑚𝐵𝐷
i=1 =0.0196, and                                          

  

    h  T BD  =
𝑚𝐵𝐷 β 

𝑇
=(16)(0.7970)/400 =0.0319. 

 

This gives 𝜇𝑑
∗ℎ  T BD = 0.0230.  Therefore, 

λ EM = λ CA − λ BD +  (1 −
𝑚𝐵𝐷
i=1 di

∗)
N i

T
 + μd

∗h   
T

BD
 = 0.1298 − 0.0800 + 0.0196 + 0.0230 = 

0.0924.                                   

                                             

The Crow Extended Reliability Projection Model’s projected MTBF is M EM = 10.82.  The 

achieved MTBF before the 16 delayed fixes (as calculated in the previous example using the 

AMSAA RGTMC is estimated by M CA = 7.71.  Therefore, the MTBF grew to 7.71 as a result of 

corrective actions for BC-modes during the test and then jumped to 10.82 as a result of the 

delayed corrected actions for the BD-modes after the test.  

 

As pointed out in Section 6.3.3.6 it is important that the classification of a B-mode, with respect 

to the BD and BC categories, not be dependent when the mode occurs during the test phase.  In 

particular, the Crow-Extended Model requires the assumption that the number of BD-failures 

that occur by t, denoted by NBD(t), is a HPP.  In the following, data from TABLE XV will be 

used to illustrate how this assumption can be statistically tested.   

 

Let H0 be the null hypothesis that NBD(t) is a HPP over the test phase.  Under H0, NBD(t) is a 

Poisson process with a power law mean value function where the power equals one.  Thus under 

H0:  E(NBD(t))=𝐵𝐷𝑡
𝜂𝐵𝐷   where 𝐵𝐷 0 and 𝑛𝐵𝐷=1. 
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A maximum likelihood estimate (MLE) of 𝜂𝐵𝐷  is 𝜂 𝐵𝐷=
𝜂𝐵𝐷

 ln (
𝑇

𝑥𝐵𝐷 ,𝑖
)

𝑛𝐵𝐷
𝑖=1

 where 𝜂𝐵𝐷  equals the 

number of BD-failures over the test phase of duration T and 𝑥𝐵𝐷,𝑖  denotes the cumulative test 

phase time to the i
th

 BD-failure. 

 

Under the null hypothesis H0, it can be shown that the statistic 
2𝑛𝐵𝐷  

𝜂 𝐵𝐷
 conditioned on NBD (T)= 𝑛𝐵𝐷  

is distributed as a chi-square random variable with 2𝑛𝐵𝐷  degrees of freedom, denoted by 

𝑥2(2𝑛𝐵𝐷).  Thus for significance level x, reject H0 if 
2𝑛𝐵𝐷  

𝜂 𝐵𝐷
 𝑥2

x

2
(2𝑛𝐵𝐷)  or  

 2𝑛𝐵𝐷  

𝜂 𝐵𝐷
>

𝑥2
1−

𝑥

2
(2𝑛𝐵𝐷).   

 

In the above, 𝑋2
x

2
(2𝑛𝐵𝐷)  and 𝑋2

1−
𝑥

2
(2𝑛𝐵𝐷) denote the 

x

2
 and 1 −

𝑥

2
 percentiles, respectively, of 

𝑋2(2𝑛𝐵𝐷).    From TABLE XV, 𝑛𝐵𝐷=32 and thus chi-square tables or statistical software may 

be used to obtain the 
𝑥

2
 and 1 −

𝑥

2
 percentiles of 𝑋2(64) for a selected significance level x.   The 

results for this test of H0 using the data of TABLE XV is provided in TABLE XVII below. 

 

TABLE XVII. Results for test of NBD(t) 

 

H0:  NBD(t) is a Homogenous Poisson Process (HPP)          

𝜶 𝑿𝟐
α/2(𝟐𝒏𝑩𝑫) 𝑿𝟐

1-α/2(𝟐𝒏𝑩𝑫) Test Statistic Test Result 

0.10 46.595 83.675 54.76 Do Not Reject Null Hypothesis 

0.20 49.996 78.860 54.76 Do Not Reject Null Hypothesis 

0.40 54.336 73.276 54.76 Do Not Reject Null Hypothesis 

 

Note H0 cannot be statistically rejected even at significance level 𝜶=0.40.  Thus, there is no 

strong statistical evidence against H0. 

 

In like manner, the null hypothesis H0: NA(t) is a HPP can be tested, where NA(t) denotes the 

number of A-failures occurring in the test phase by t.  In the test of H0,  

 𝑛𝐵𝐷  is replaced by 𝑛A=NA(T) and xBD,i is replaced by xA,i, the cumulative time of occurrence of 

the i
th 

A-failure in the test phase.  Results for the test of this H0 are displayed in TABLE XVIII. 
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TABLE XVIII. Results for test of NA(t) 

 

H0:  NA(t) is a Homogenous Poisson Process (HPP)          

𝜶 𝑿𝟐
α/2(𝟐𝒏𝑨) 𝑿𝟐

1-α/2(𝟐𝒏𝑨) Test Statistic Test Result 

0.10 10.851 31.410 11.46 Do Not Reject Null Hypothesis 

0.20 12.443 28.412 11.46 Reject Null Hypothesis 

 

TABLE XVIII indicates there is no strong statistical evidence against H0 in the sense one cannot 

reject H0 at significance level 𝜶=0.10.  However, representing NA(t) as a HPP is more 

problematic than for NBD(t) since H0 in TABLE XVIII is rejected for 𝜶=0.20.   

 

The Crow-Extended Model null hypothesis, H0: NBD(t) is a HPP, can also be tested using interval 

data for the test phase.  Let 0=z0z1….zp=T and let fBD,j denote the number of BD-failures in 

(tj-1,tj] for j=1,…,p.  Under H0 the expected number of BD-failures in (tj-1,tj] is eBD,j=(tj-tj-1)BD 

where BD is the constant BD failure intensity for the HPP NBD(t).  Note the model estimate of 

eBD,j under H0 is 𝑒 BD,j=(zj-zj-1)(
𝑛𝐵𝐷

𝑇
).  Combine adjacent intervals, if necessary, to obtain 𝑒 BD,j≥ 5 

for each interval.  Let 𝑝  denote the number of intervals after combining where necessary.  In the 

following, let 𝑓BD,j and 𝑒 BD,j respectively denote the number of observed BD-failures and the 

model estimate of the expected number of BD-failures for interval j after combining the original 

intervals where required.  Also, assume 𝑝 ≥ 2.  Then X
2=  

(𝑓𝐵𝐷 ,𝑗−𝑒 𝐵𝐷 ,𝑗 )2

𝑒 𝐵𝐷 ,𝑗

𝑝 
𝑗=1  is approximately 

distributed as a chi-square variate with 𝑝 -1 degrees of freedom.  Thus reject H0 at significance 

level α if 𝑋2 > 𝑋2
1−𝛼(𝑝 − 1) where X1−𝜶

2  𝑝 − 1  is the 1 − 𝛼 percentile of 𝑋2 𝑝 − 1 .  One 

can use interval data in a similar manner to test the null hypothesis H0:NA(t) is a HPP. 
 

6.3.3.9 Management and Maturity Metrics for the Crow Extended Reliability Projection 

Model.   
In (Crow 2004), he includes a section of 33 management and maturity metrics which are useful 

for providing management and engineering insights for some practical situations.  These are 

illustrated using the data of TABLES XV and XVI.  The metrics are not presented here, but they 

may be found in this referenced paper. 

 

 

6.3.4 AMSAA Maturity Projection Model (AMPM). 

 

6.3.4.1 Purpose.     
The purpose of AMPM is to provide an estimate of the projected reliability following the 

implementation of both delayed and non-delayed fixes.  The model also provides estimates of the 

following important reliability growth metrics: 

a) B-mode initial failure intensity 

b) expected number of B-modes surfaced 

c) percent surfaced of the B-mode initial failure intensity surfaced 

d) rate of occurrence of new B-modes 
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6.3.4.2 Assumptions.    
The Assumptions associated with AMPM include:  

a) Test duration is continuous; 

b) Failure modes independently occur and cause system failure; 

c) Failure modes can be classified as either A-modes or B-modes;  

d) Corrective actions are implemented prior to the time at which projections are made; and 

e) Initial B-mode failure rates can be modeled as a realization of a random sample from a 

gamma distribution. 

 

6.3.4.3 Limitations.    
The limitations associated with AMPM include:  

a) FEFs are often a subjective input; and 

b) Projection accuracy can be degraded via reclassification of A-modes to B-modes.  

 

6.3.4.4 Benefits.    
The benefits associated with AMPM include:  

a) Corrective actions can be  implemented during test or can be delayed until the end of test; 

b) Reliability can be projected for future milestones; 

c) The model can project the impact of delayed corrective actions on system reliability; 

d) The projection takes into account the contribution to the system failure rate due to 

unobserved B-failure modes; 

e) In situations where there is an apparent steepness of cumulative number of B-modes 

versus cumulative test time over an early portion of testing after which this rate of 

occurrence slows, there is methodology to partition the early modes from the remaining 

modes.  These early B-modes must be aggressively and effectively corrected.   

f) Additionally methodology exists to handle cases where there is an early "gap" or if there 

appears to be a difference in the average FEFs in early or start-up testing versus the 

remainder of testing (an apparent or visual difference in failure rate in the initial testing). 

 

6.3.4.5 Overview of AMPM Approach. 

AMPM addresses making reliability projections in several situations of interest.   

 

The first situation of interest is where all fixes to B-modes are implemented at the end of the 

current test phase, Phase I, prior to commencing a follow-on test phase, Phase II.  The projection 

goal is to assess the expected system failure intensity at the start of Phase II.   

 

The second situation of interest is where the reliability of the unit under test has been maturing 

over Phase I due to implemented fixes during Phase I.  This case includes the situations where: 

a) all surfaced B-modes in Phase I have fixes implemented within this test phase; or 

b) some of the surfaced B-modes are addressed by fixes within Phase I and the remainder 

are treated as delayed fixes and fixed at the conclusion of Phase I, prior to commencing 

Test Phase II. 

 

The third situation of interest involves projecting the system failure intensity at a future program 

milestone, which may occur beyond the commencement of the follow-on test phase. 
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All three types of projections are based on the Phase I B-mode first occurrence times and 

whether the associated B-mode fix is implemented within the current test phase or delayed (but 

implemented prior to the projection time).  Additionally, the projections are based on an average 

FEF with respect to all the potential B-modes, whether surfaced or not.  However, this average 

FEF is assessed based on the surfaced B-modes.  For AMPM, the set of surfaced B-modes would 

typically be a mixture of those addressed with fixes during the current test phase as well as those 

addressed beyond the current test phase. 

 

For complex systems or subsystems, AMPM utilizes a NHPP with regard to the number of 

distinct B-modes that occur by test duration t.  The mean value function for the expected number 

of B-modes, where not all fixes need be delayed, is given by: 

 λB β  ln 1 + βt  
In this expression, is a positive constant and λB  denotes the expected initial failure intensity 

due to all the B-modes.  The constant β is not the β of the power law tracking model (i.e., 

RGTMC).  Statistical tests for this mean value function can be based on a chi-square statistic 

(Section 6.3.4.9). 

 

The associated pattern of B-mode first occurrence times is not dependent on the corrective action 

strategy, under the assumption that corrective actions are not inducing new B-modes to occur.  

Thus, the AMPM assessment procedure is not upset by jumps in reliability due to delayed groups 

of fixes.   

  

AMPM can also be used to construct a useful reliability maturity metric.  This metric is the 

fraction of the expected initial system B-mode failure intensity, 
B , surfaced by test duration t.  

(i.e. the expected fraction of 
B  due to B-modes surfaced by t).   

 

6.3.4.6 Development of AMPM.    

AMPM provides a procedure for assessing the system failure intensity,  ;tr , after fixes to all 

B-modes surfaced by test time t have been implemented.  AMPM does not attempt to assess the 

expected system failure intensity,   ;t , by estimating each 
i .  Instead, the AMPM approach 

is to view  K ,,1   as a realization of a random sample  K ,,1   from the gamma 

random variable   , .  This allows one to utilize all the B-mode times to first occurrence 

observed during Test Phase I to estimate the gamma parameters  and .  Thus in place of 

directly assessing   ;t , AMPM uses estimates of   and   to assess the expected value of  

 ;t  where  

    







K

i

t

ii

K

i

iiA
ieddt

11

1;     

This assessed value is then taken as the AMPM assessment of the system failure intensity after 

fixes to all B-modes surfaced over [0,t] have been implemented.  This approach does away with 

the need to estimate individual 
i , which could be particularly difficult in the case where many 

fixes are implemented prior to the end of the period [0,T].  The expected value of  ;t   is 

 

     tht dKBdA   ,1
 

 
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where 𝐵,𝐾 = 𝐸(∧𝑖) and h(t)=E( ∧𝑖 𝑒
−𝑡∧𝑖 𝐾

𝑖=1 ).  Both expected values are with respect to ∧.   In 

taking the expected values, it is assumed that 𝑑𝑖  does not depend on the magnitude of 𝑖. 
 

This expression is more appealing when put in a slightly different form, by subtracting and 

adding the term h(t) on the right side of the equation: 

 

        ththt KBdA  ,1 
 

 

This equation expresses the expected failure intensity once all the fixes have been implemented 

to the B-modes surfaced by test time t≤ T.  The first term, λA , is simply the assumed constant 

failure rate due to all the A-mode failures, estimated by NA T   where NA denotes the number of 

A-mode failures that occur during [0, T].  To consider the second failure intensity, first consider 

the final term, h(t).  It may be shown that h(t) is the expected rate of occurrence of new B-modes 

at time t averaged over random samples.  h(t) can also be shown to represent the expected rate of 

occurrence of failures due to the B-modes that have not been surfaced by t.  Then h(t) is the 

unconditional expected failure intensity due to the set of unsurfaced B-modes at time t. Thus, for 

the second term in the above equation, B,K –h(t) is the expected rate of occurrence of failures 

due to the B-modes that have been surfaced by t.  If these surfaced failure modes are fixed with 

an average FEF of d,  then after mitigation, the expected residual rate of occurrence of failures 

due to these surfaced B-modes can be approximated by (1-d )(B,K –h(t)).    The arithmetic 

average of the individual mode FEFs for the surfaced B-modes can be utilized as an assessment 

of d .  For the case where all fixes are delayed, one can simply estimate B,K by NB /T where NB 

denotes the number of B-mode failures that occur over the test interval [0, T].   

 

6.3.4.7 Estimation Procedures for AMPM using cumulative time data.    
This section specifies the procedures to estimate key AMPM parameters and reliability measures 

expressed in terms of these parameters.  Estimation equations will be given for the finite K and 

NHPP variants of AMPM.  The model parameter estimators are MLEs.   

 

The parameter estimates are written in terms of the following data:  

m  = number of distinct B-modes that occur over a test period of length T; 

 

 mttt ,,1   where Tttt m  210  are the first occurrence times of the m  

observed B-modes; and  

 

An  = number of A-mode failures that occur over test period T.   

 

Holding the test data constant and letting K  yields AMPM projection estimates that are 

appropriate for complex subsystems or systems that typically have many potential B-modes.  The 

AMPM limit estimating equations can also be obtained from MLE equations for the NHPP 

associated with AMPM.  This process has the mean value function  

 

 
λB

β
  ln 1 + βt  , where B, B>0. 
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Recall 
KK  ,  are the gamma parameters for AMPM, where it is assumed the K initial B-mode 

failure rates are realized values of a random sample from a gamma random variable,  KK  , .  

The MLE for 
K  is 
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The MLE for 
K  is K

^

 , where K

^

  can be easily obtained from 
K
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  and either equation below.  

These equations are the maximum likelihood equations for 
K  and 
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^^

  one can estimate all finite K AMPM quantities where the A-mode failure 

rate, 
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The limiting AMPM estimates for key projection model quantities are: 
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This agrees with intuition in the sense that  T




  is an estimate of the expected number of 

distinct B-modes generated over the test period [0,T], while m is the observed number of distinct 

B-modes that occur. 

 

If one adopts the view that the ―model of reality‖ for a system or subsystem is AMPM for a finite 

K, which is large but unknown, then one can consider the limiting AMPM projection estimates 

as approximations to the AMPM estimates that correspond to the ―true‖ value of K.  Over the 

projection range of Tt   values of practical interest, the limiting estimates should be good 

approximations for complex systems or subsystems.  In this sense, knowing the ―true‖ value of K 

is usually unimportant.   

 

6.3.4.8 Estimation for AMPM using Interval Data.    
One may wish to utilize interval data for the reasons discussed in Section 6.3.2.10.  Let 

0=z0z1….≤zs=T partition a test phase of interest into intervals.  To estimate the AMPM 

parameters 𝐵 and , for each interval (zi-1,zi] one must record the interval test duration zi - zi-1 

and the number of first occurrence B-modes that occur in the interval.  The parameters 𝐴and 
𝑑

 

are assessed as in Section 6.3.4.7.  The model equations are the same as in the previous section.  

Only the estimation formulas for 𝐵 and  change. 

 

The interval data (also referred to as grouped data) estimation procedure for the AMPM will only 

be addressed for k=∞.  For this case the number of unique B-modes that occur by test duration t, 

denoted by 𝑀𝐵(t), can be viewed as a NHPP with mean value function 

(t)=E(𝑀𝐵(t))=(
𝐵


) ln(1 + 𝑡).  In the above, E(𝑀𝐵(t)) denotes the expected value of 𝑀𝐵(t). 
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For interval (zi-1 - zi], the probability of observing mi new B-modes in the interval is given by the 

Poisson probability [𝑒−{ 𝑧𝑖  − 𝑧𝑖−1  }  ][
{ 𝑧𝑖  − 𝑧𝑖−1  }  

𝑚 𝑖
  

m i !
]. 

 

Thus the likelihood associated with the B-mode data vector 𝑚     = (m1, m2,…, ms) is  

L(𝑚;      𝐵, )=  [𝑒−{ 𝑧𝑖  − 𝑧𝑖−1  }  ][
{ 𝑧𝑖  − 𝑧𝑖−1  }  

𝑚 𝑖
  

m i !
]𝑠

𝑖=1  .   The likelihood equations are  

 
𝜕

𝜕𝐵
ln{𝐿(𝑚;      𝐵 ,)}|( 𝐵,  )=0 and 

𝜕

𝜕
ln{𝐿(𝑚;      𝐵 ,)}|( 𝐵 ,  )=0.  The above notation indicates 

that the partials of ln {𝐿(𝑚;      𝐵 , 𝐵)} with respect to 𝐵 and , respectively, when evaluated at 

(𝐵 ,) =  ( 𝐵,  ) must equal zero. 

 

These two likelihood equations for the MLEs of 𝐵  and , denoted by   𝐵  and   respectively, are 

equivalent to the following two equations: 

 

 𝐵 = 
𝑚 

ln 1+ 𝑇 
 and 

 1+  T ln 1+  T 

T
 { 𝑠
𝑖=1

𝑚 𝑖

ln 1+  𝑧𝑖 −ln 1+  𝑧𝑖−1 
}{ 

𝑧𝑖

( 1+ 𝑧𝑖)
− 

𝑧𝑖−1

( 1+ 𝑧𝑖−1)
} = 𝑚. 

 

In the above equations, 𝑚 =  𝑚𝑖
𝑠
𝑖=1 .    is numerically solved for in the second equation and 

used to obtain  𝐵via the first equation.  Note that the first equation can be written as 
 𝐵

 
ln(1 + T)=m.  This equation says the model estimate of the number of distinct B-modes, 

based on the MLEs  𝐵  and  , equals the observed number of distinct B-modes surfaced over the 

test phase. 

 

6.3.4.9 Statistical and Visual Goodness-of-Fit Procedures for AMPM.   

The chi-squared goodness-of-fit test discussed for the AMSAA-Crow interval data case may be 

applied to test the null hypothesis 𝐻0:  𝑀𝐵(t) is a NHPP with mean value function 𝜇 𝑡 =

(
𝐵

𝛽
)ln(1 + 𝑡).   The test can be applied to 𝐻0 whether 𝐵 and 𝛽 are estimated by cumulative B-

mode first occurrence times or by using the interval data approach of Section 6.3.4.8. 

 

To utilize a chi-squared test one must select a partition of the test phase 0=z0z1….≤zs=T. 

When 𝐵 and 𝛽 are estimated from interval data, the partition used to estimate these parameters 

is the natural starting partition for the chi-squared test.  For interval (zi-1, zi ], one must estimate 

𝑒𝑖  , expected number of new B-modes that occur during (zi-1, zi ].  This is estimated by 𝑒 𝑖=𝜇 (𝑧𝑖)-

𝜇 (𝑧𝑖−1)= 
 𝐵

 
{ln(1 + (𝑧𝑖)- ln(1 +  (𝑧𝑖−1)}.  If cumulative B-mode first occurrence data is 

utilized to estimate 𝐵and , then 𝑒 𝑖  should be based on these estimates.  Likewise, if interval 

data is utilized to estimate 𝐵and , then 𝑒 𝑖  should be based on interval data estimates. 

 

For both data cases, one should combine adjacent intervals where necessary to obtain a set of 

intervals (𝑧i-1, 𝑧i ] for i=1,…, 𝑠 such that the model estimate of 𝑒 i =𝜇(𝑧𝑖
)- 𝜇(𝑧𝑖−1

 ) is at least five 

for i=1,…, 𝑠.  To use this chi-squared test one must have 𝑠≥3.  The estimate of 𝑒 i  will be 

denoted by 𝑒 𝑖
.  It is given by 𝑒 𝑖

= 𝜇 (𝑧𝑖
)- 𝜇 (𝑧𝑖−1

 )= 
 𝐵

 
{ln(1 + (𝑧𝑖

)- ln(1 + (𝑧𝑖−1
 )}.  The  𝐵  and 
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   are based on the cumulative B-mode first occurrence time data or the interval data associated 

with the original intervals (𝑧𝑖−1, 𝑧𝑖].  With 𝑒 𝑖
≥5 for i=1,…, 𝑠, the test statistic 𝑋2(𝑠-

2)= 
 𝑚 𝑖

−𝑒 𝑖
  

2

𝑒 𝑖


𝑠

𝑖=1  will be approximately a chi-squared random variable with 𝑠-2 degrees of 

freedom.  In the above equation, 𝑚𝑖
  denotes the observed number of new B-modes that occur 

during (𝑧i-1, 𝑧i ]. 
 

If 𝑋2(𝑠-2)> 𝑋1−∝
2 (𝑠-2) then H0 would be rejected at significance level ∝.  In this inequality, 

𝑋1−∝
2 (𝑠-2) denotes the  1−∝ percentile of a chi-squared random variable with 𝑠-2 degrees of 

freedom. 

 

For cumulative time data, one should plot the model estimate of the expected number of distinct 

B-modes that occur by 𝑡𝑖  versus the observed number that occur by 𝑡𝑖 , for each cumulative B-

mode first occurrence time 𝑡𝑖  for i=1,…, 𝑚.  For interval data, one should base the estimates of 

𝐵 and  on the original partition 0=z0z1….zs=T.  The corresponding model estimates of 

𝜇 (𝑧𝑖) versus the observed number of distinct B-modes by 𝑧𝑖  should be plotted for i=1,…, 𝑠. 

 

6.3.4.10 A Plausibility Check for AMPM.    

Let T denote the length of a test phase of interest.  Also let 𝑁𝐴 and 𝑁𝐵 denote the numbers of 

failures over the test phase associated with A-modes and B-modes, respectively.  Then the total 

number of failures observed during the test phase is 𝑁 = 𝑁𝐴 + 𝑁𝐵.  Let 𝜌(T) denote the system 

failure intensity after mitigating all the B-modes that are observed in the test phase.  Recall 

𝜌 𝑇 = 
𝐴

+(1-𝜇𝑑 ){ 𝐵 − ℎ(𝑇)} +  ℎ(𝑇) assuming the observed B-modes are fixed, on average, 

with fix effectiveness factor 𝜇𝑑 .  Let 𝜌 (T) denote the AMPM assessment of 𝜌 𝑇 .  In assessing 

𝜌 𝑇 , one is assuming that each surfaced B-mode is mitigated either during the test phase or in 

the CAP at the conclusion of the test phase.  Thus if a follow-on test of length T is conducted 

under the same test conditions, one would expect to obtain fewer failures than N.  Note {𝜌 (T)}T 

would be an estimate of the number of failures to expect in such a follow-on test.  Thus it is 

reasonable to expect that 𝜌 (T) satisfies the following inequality:  {𝜌 (T)}TN, i.e., 𝜌 (T)<
𝑁

𝑇
.   

This inequality can be considered a ―plausibility check‖ for the assessment 𝜌 (T). 

 

This inequality can also be viewed as a plausibility check on 
𝑑
∗ , the assessed value of the 

average B-mode FEF 𝜇𝑑 .   To see this, note that the inequality is equivalent to  𝐴 +(1-
𝑑
∗ )( 𝐵 −

ℎ (T))+ ℎ (T)< 
𝑁

𝑇
.   Replacing  𝐴 by 

𝑁𝐴

𝑇
 and 

𝑁

𝑇
 by  

𝑁𝐴

𝑇
+

𝑁𝐵

𝑇
 , upon simplifying one obtains  

(1-
𝑑
∗ )  𝐵+

𝑑
∗ ℎ (T)< 

𝑁𝐵

𝑇
.  This inequality is equivalent to 

𝑑
∗ >

 𝐵−
𝑁𝐵
𝑇

 𝐵−ℎ (T)
. 

 

Assuming ℎ (t) is a decreasing function, one can show ℎ (T)< 
𝑁𝐵

𝑇
.  This implies there always exists 

an assessment of 𝜇𝑑  that is less than one which will satisfy inequality 
𝑑
∗ >

 𝐵−
𝑁𝐵
𝑇

 𝐵−ℎ (T)
.  Such an 

assessment of 𝜇𝑑  guarantees that 𝜌 (T) will satisfy the plausibility check, i.e., inequality 𝜌 (T)<
𝑁

𝑇
.  
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For the special case where all fixes are delayed until the CAP then any assessment of 𝜇𝑑  greater 

than zero will ensure that 
𝑑
∗ >

 𝐵−
𝑁𝐵
𝑇

 𝐵−ℎ (T)
 holds, provided 𝐵 is estimated by 

𝑁𝐵

𝑇
 for this case.   

 

If the FEF assessments 𝑑𝑖
∗ tend to be biased low relative to the true effectiveness of the fixes, 𝑑𝑖 , 

for the observed B-modes then 𝜇∗=
1

𝑚
 𝑑𝑖

∗
𝑖𝜖𝑜𝑏𝑠  will be biased low.  This could lead to inequality 


𝑑
∗>

 𝐵−
𝑁𝐵
𝑇

 𝐵−ℎ (T)
 not being satisified.  This in turn would lead to 𝜌 (T) failing the plausibility check, i.e. 

violating inequality 𝜌 (T)<
𝑁

𝑇
.  This situation can arise when short-term expedient fixes are being 

applied during the test phase that are more effective than the assessments of 𝑑𝑖  based on long-

term tactical solutions.  The short-term fixes may be highly effective at preventing repeat failures 

for the remainder of the test but are typically not suitable tactical solutions.  One commonly 

encountered short-term ―fix‖ is simply avoiding exercising devices on the system that have 

known failure modes which one intends to fix at a future date.  The motivation for this course of 

action is to foster test execution in a timely manner.  Such a test execution strategy would in 

essence be employing short-term fixes for the known device failure modes that have one as their 

realized FEF.  This would result in the right hand side of inequality 𝜌 (T)<
𝑁

𝑇
 being artificially 

reduced.  However 𝜌 (T) is typically based on engineering judgements 𝑑𝑖
∗ that reflect the 

expected effectivity of tactically suitable long-term corrective actions.  Such a disconnect 

between the left and right hand sides of inequality 𝜌 (T)<
𝑁

𝑇
 would tend to result in 𝜌 (T) being 

greater than 
𝑁

𝑇
.  Additionally, highly effective short-term fixes applied in the test phase would 

tend to inflate tracking model estimates of the reliability. 

 

Another reason the inequality 𝜌 (T)<
𝑁

𝑇
 may not be satisfied is that the model is not consistent with 

the data as determined by statistical or visual goodness-of-fit tests.  Even when the model 

appears to be consistent with the pattern of B-mode first occurrence data, a biased estimate  𝐵 

can be obtained that is substantially larger than 𝐵.  This could also result in 𝜌 (T) not satisfying 

the inequality  𝜌 (T)<
𝑁

𝑇
. 

 

In cases where the graph of the number of B-modes that occur by t versus t appears steep at the 

origin (such as displayed in Figure 39),  (t) will have a steep slope  𝐵 = ℎ  0  at the origin.  

Under such conditions the accuracy of  𝐵 relative to 𝐵 could degrade.  If  𝐵is significantly 

greater than 𝐵 then the growth potential failure intensity estimate 𝜌 𝐺𝑃= 𝐴 + (1 − 
𝑑
∗ ) 𝐵 would 

be unduly large.  Since  𝜌 (T)> 𝜌 𝐺𝑃 , such a circumstance could lead to  𝜌 (T) not passing the 

plausibility test, even when the assessment of 𝜇𝑑  is reasonable.  To check this possibility, it is 

useful to calculate 
𝑁𝐵 (𝑡0)

𝑡0
 where 𝑁𝐵(𝑡0) denotes the number of B-mode failures over [0, 𝑡0], 

where 0<𝑡0 ≤T.  The value 𝑡0should be chosen as small as possible subject to 𝑁𝐵(𝑡0)being large 

enough so that 
𝑁𝐵 (𝑡0)

𝑡0
 provides a stable estimate of the average B-mode failure intensity over 

[0, 𝑡0].  Although one should expect  𝐵 >
𝑁𝐵 (𝑡0)

𝑡0
, if   𝐵 significantly exceeds this ratio then  𝐵 

may be unduly large compared to the value 𝐵.   
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When  (t) and the B-mode cumulative data have a steep slope at the origin it could be an 

indication of test start-up problems.  Many of these early B-modes may be due to operator and 

maintenance procedure problems.  Such steepness would dictate that these initial problems must 

be fixed with a high average FEF to attain a growth potential MTBF that supports the 

development test goal MTBF.  This suggests that over an initial period [0, v] where the 

cumulative number of observed B-modes is quickly rising, one may wish to assess an average 

FEF 
1
∗  based on the individual B-mode FEF assessments 𝑑𝑖

∗ for modes that occur during [0,v].  

A separate average FEF 
2
∗  could be assessed based on the arithmetic average of the 𝑑𝑖

∗ for the 

B-modes surfaced over the remainder of the test phase (v,T].  The resulting AMPM assessment 

of 𝜌(T) utilizing v, 
1
∗ , and  

2
∗  is discussed in Section 6.3.4.8.2.  The plausibility check can then 

be applied to this 𝜌 (T) assessment. 

 

If the initial steepness over [0, v] is thought to be due to infant mortality issues one may wish to 

utilize only the data beyond [0, v].  Section 6.3.4.11 discusses two such procedures. 

 

6.3.4.11   Analysis Considerations for Apparent Changes in Failure Mode Rates of 

Occurrence.    
There may be times when there appear to be changes in the rate of occurrence of B-modes, 

especially during initial periods of testing or near the end of testing.   This may be seen through 

plots of the rate of occurrence of B-modes, wherein the rate is initially high, and after a period of 

testing, the rate of occurrence slows; or the reverse occurs.  Such changes may occur due to a 

number of reasons: initial assembly or infant mortality, quality or weak areas of the design and 

operator unfamiliarity with equipment, or refurbishing hardware near the end of a test phase.  

The following sections address three approaches for dealing with apparent changes in failure 

mode rates of occurrence. 

 

6.3.4.11.1   The Gap Method.    
A projection is a reliability estimate that takes into account the contribution of A-mode failures, 

B-mode failures, and the effectiveness of the corrective actions that are implemented to B-

modes.  The statistical reliability projection, based on this information, is significantly influenced 

by the initial B-mode rate of occurrence.  For some systems under development, the initial rate of 

occurrence of B-modes is steep (see Figure 38).  This can be due to problems associated with 

infant mortality, initial assembly procedures, or operator unfamiliarity with the system.  One way 

of excluding the impact of such start-up problems on the reliability projection is to utilize only 

the test data beyond an initial time period.  This is referred to as ―jumping the gap.‖   

 

In deciding to ―jump the gap‖ over [0, v], one needs to make the following judgements 

concerning the NHPP model:  (1) it provides an adequate representation for the number of 

distinct B-modes that occur by t for those modes not associated with the special classes of start-

up modes;  and (2) to a high degree, the start-up modes are confined to the initial segment [0, v] 
of the test phase.  Under such circumstances it is reasonable to estimate the parameters governing 

the underlying NHPP mean value function (t) by maximizing the portion of the NHPP 

likelihood function associated with the B-mode first occurrence data in (v, T].  The resulting 

model parameter MLEs along with estimates of 𝐴 and 𝜇𝑑  (based on the data not associated with 

start-up problems) would be used to assess the failure intensity projection 𝜌(𝑇).  Visual and 
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statistical goodness-of-fit procedures can be conducted as before utilizing the B-mode first 

occurrence data beyond v. 

 

 
FIGURE 39.   Example Curve for Illustrating the Gap Method. 

 

6.3.4.11.2   The Segmented FEF Method.    
The segmented FEF method is another strategy that may be useful for a dataset where the initial 

rate of occurrence of B-modes is very steep due to start-up problems.  With this method, a 

partition point, v, is chosen such that a relatively high average FEF, 𝜇1 , is applied to the B-modes 

occurring on or before v, and a more typical average FEF, 𝜇2 , is applied to the B-modes surfaced 

beyond v.  Note that this method is justified only if the early B-modes (those occurring on or 

before v) are aggressively and effectively corrected.  Engineering analysis should be the driving 

force in choosing the initial segment v; however, statistical analysis may be useful in viewing 

and/or estimating v.  In using this method, the underlying assumption is that the B-modes 

occurring during the early segment are those whose failure mechanisms are so well understood 

that they can be assigned very high FEFs.   

 

Recall that the failure intensity projection equation (for single FEF) is given by 

 

                         ρ(t) = λA +  1 − 𝜇𝑑  λB − h t  + h(t).                                                                                       

 

The failure intensity projection equation for the segmented FEF method is given by 

 

  ρ t = λA +  1 − 𝜇1  λB − h v  +  1 − 𝜇2 (h v − h t ) + h(t) 
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where  0 ≤ v < 𝑡 ≤ 𝑇.  ―v‖ is a partition point such that FEF 𝜇1 is applied to B-modes surfaced 

on or before v, and FEF 𝜇2 is applied to B-modes surfaced beyond v.  Note that when v = 0, the 

last equation reduces to the first equation, and h(0) = λB . 

 

6.3.4.11.3   The Restart Method.    
Another approach to analyze the data is to re-initialize the data beginning at the partition point, v, 

and to re-initialize the test time to zero at v.  Thus, failure data prior to v would not be used in the 

analysis.  Note that a repeat of a failure mode occurring prior to v that occurs after v may now be 

the first occurrence of that failure mode and thus included as a ―first occurrence.‖ 

 

The rationale for implementing this approach versus the Gap Method may be for practical 

analysis or engineering concerns of the data, such as significant changes in the system’s 

configuration or possible differences in test conditions.   

 

The basic difference between the Gap Method and the Restart Method is after determining the 

partition point, v, the Restart Method reinitializes test time to zero at v.  And as noted above, first 

occurrences of modes prior to v having repeats after v would now, with the next occurrence of 

that mode, be considered first occurrences.  The analysis would then be the same as with the 

normal AMPM application. 

 

 

6.3.5 AMSAA Maturity Projection Model based on Stein Estimation (AMPM-Stein). 

 

6.3.5.1 Purpose.   
The purpose of AMPM-Stein is to provide an estimate of the projected reliability following the 

implementation of delayed fixes.  The model also provides estimates of the following important 

reliability growth metrics: 

a) B-mode initial failure intensity 

b) expected number of B-modes surfaced 

c) percent surfaced of the B-mode initial failure intensity 

d) rate of occurrence of new B-modes 

. 

6.3.5.2 Assumptions.   
The assumptions associated with AMPM-Stein are the same as those for AMPM, with one 

exception – all corrective actions must be delayed. 

 

6.3.5.3 Limitations.   
The limitations associated with AMPM-Stein include: 

a) FEFs are often a subjective input; and  

b) there must be at least one repeat failure mode. 

 

6.3.5.4 Benefits.  
The benefits associated with (Ellner and Hall 2004) include: 
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a) May provide a more accurate reliability projection than that of ACPM, given that the 

model assumptions hold (this has been shown via simulation case studies conducted to 

date);  

b) Allows for natural trade-off analysis between reliability improvement and incremental 

cost; 

c) Identified failure modes do not need to be grouped into A-modes and B-modes;  

d) Utilizes individual failure mode FEFs that are not required to be independent of the 

modes’ initial failure rate; and 

e) Less data is required than ACPM.   Mode first occurrence times are not required for 

estimating model parameters. 

 

6.3.5.5 Differences in Technical Approach.    
There are a few significant differences between the AMPM-Stein approach and the other 

methods (ACPM and AMPM), which include: 

a) For surfaced modes, the AMPM-Stein approach does not require one to distinguish 

between A-modes and B-modes, other than through the assignment of a zero, and 

positive FEF, respectively, to surfaced modes.   

b) Only FEFs associated with the surfaced modes need to be referenced; and   

c) The AMPM-Stein projection is a direct assessment of the realized system failure intensity 

after failure mode mitigation, whereas the ACPM and AMPM approaches indirectly 

attempt to assess the realized system failure intensity by estimating the expected value of 

the mitigated system  failure intensity, )(Tr , where )(Tr  is viewed as a random variable.  

 

6.3.5.6 Methodology. 

AMPM-Stein uses an estimation criterion utilized by Stein in (Stein 1981) to estimate the vector 

of means for multi-variate normal random vectors. The criterion applied to estimating the vector 

of initial B-mode failure rates (k ) produces the estimated vector  λ 1, … , λ k  where 

Stein Estimate:    λ i = θλ i +  1 − θ  
1

k
 λ i

k

i=1

     

for i = 1,…,k.  In this expression λ i =
N i

T
 and θ is chosen to be the value θS ∈  0, 1  that 

minimizes the expected sum of squared errors   λ i − λi 
2k

i=1 .  The parameter θS  is referred to as 

the shrinkage factor.  The corresponding projected failure intensity is estimated as: 

 

ρ  T = λ A +   1 − di
∗ 

i∈obs (B)

λ i +  λ i

i∈obs     (B)

 

 

where di
∗ is the assessment of the true value of FEF di .  Note that the Stein estimate of observed 

mode failure rates are reduced by their assessed mode FEF and that the collective failure rate due 

to unobserved failure modes is estimated by the sum of the Stein failure rate estimates for 

unobserved modes. It may be shown that 

θS =
kVar λi 

kVar λi +  
λ
T  1 −

1
k
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where var  λi =
  λ i−λ  

2K
i=1

k
 , λ =  λi

k
i=1  , and λ =

λ

k
 .  Thus, θS  depends on the unknown values 

k, , and the population variance of the i, Var  λi .  Proceeding as for the AMPM, the i are 

regarded as a realized random sample from a gamma distribution.  Doing so, one can derive an 

MLE of θS , say θ S,K , for finite k.  The limit for the θ S,K , limK→∞ θ S,K  is then shown to equal 

θ S,∞ =
β ∞

1+β ∞ T
.  In this formula, β ∞  satisfies the equation  

NB

β ∞ T
 ln 1 + β ∞T = m, the number 

of observed B-modes.  This yields a projected MTBF, M S,∞ , such that 

 

M S,∞ =
1

ρ S,∞ T 
 for ρ S,∞ =

NA

T
+   1 − di

∗ λ i,∞

i∈obs (B)

+  λ i,∞

i∈obs      B 

 

 

where   λ i,∞i∈obs      B =  1 − θ S,∞  
NB

T
 , λ i,∞ = θ S,∞  

N i

T
  for each i ∈ obs.  In light of the above 

procedure, the derived projection is termed AMPM-Stein.  Simulations conducted by (Ellner and 

Hall 2004)indicate that the accuracy of the AMPM-Stein projection appears favorable compared 

to that of the international standard adopted by International Electrotechnical Commission (IEC) 

and American National Standards Institute (ANSI), even when i were randomly chosen from 

Weibull or lognormal parent populations.  Thus, with regard to these three parent populations, 

the results obtained in the simulation study were robust, even though the estimation procedure 

assumes that the parent population of the i is a gamma distribution.  

 

The Stein projection cannot be directly calculated from the data for a set of di
∗, since k is 

typically unknown before and after the test and θS  is a function of Var [i ], , and k .  However, 

as indicated above, approximations to the Stein projection can be obtained that can be calculated 

from the test data and the assessed FEFs. 

 

Finally, here is a note on the connection between the AMPM estimate for h(t) and the Stein 

projection.  It is shown that h(t) is the expected failure intensity due to the B-modes not surfaced 

by t.  The AMPM estimate for h  t as kB → ∞ is of the form 
λ B

 1+β ∙t 
.  For t=T, this form is 

compatible for complex systems with the Stein projection expression for the portion of the 

mitigated system failure intensity attributable to the B-modes not surfaced by T.  This is 

interesting to note since the Stein projection approach does not treat the initial B-mode failure 

rates as a realization of a random sample from some assumed parent population.  

 

6.3.6 AMSAA Discrete Projection Model based on Stein Estimation (ADPM-Stein).     
 

6.3.6.1 Purpose.    

ADPM-Stein is useful in cases where one or more failure modes are (or can be) discovered in a 

single trial, and catastrophic failure modes have been previously discovered and corrected.  

ADPM-Stein is an alternative to the popular competing risks approach.  However, ADPM-Stein 

would not be suitable for application to one-shot development program data sets where failure 

mode preclusion effects significantly alter the expected number of B-modes prior to trial t from 

that obtained by the model’s assumptions.  
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6.3.6.2 Assumptions.   

The assumptions associated with ADPM-Stein include: 

a) A trial results in a dichotomous occurrence/non-occurrence of B-mode i such that 

Nij ~   Bernoulli (pi) for each i =1,…, k , and j =1,…,T .  

b) The distribution of the number of failures in T trials for each failure mode is 

binomial.  That is Ni  ~Binomial (T, pi) for each i=1, …, k. 

c)  Initial failure probabilities p1 … pk constitute a realization of a random sample 

P1,…, Pk such that Pi ~ Beta (n,x)for each i =1,…, k .  

d) Corrective actions are delayed until the end of the current test phase, where a test 

phase is considered to consist of a sequence of T independent Bernoulli trials.  

e) One or more potential failure modes can occur in a given trial, where the 

occurrence of any one causes failure. 

f)  Failures associated with different failure modes arise independently of one 

another on each trial. As a result, the system must be at a stage in development 

where catastrophic failure modes have been previously discovered and corrected, 

and are therefore not preventing the occurrence of other failure modes.  

g) There is at least one repeat failure mode. If there is not at least one repeat failure 

mode, then the moment estimators and the likelihood estimators of the beta 

parameters do not exist. 

h) Estimation procedures assume all fixes are delayed. This requires T, Ni , and di for 

i =1,…, m . The number of trials, T, and the count data, Ni , for observed failure 

modes are obtained directly from testing.  The di can be estimated from test data 

or assessed via engineering judgment.  

 

6.3.6.3  Limitations.    
The limitations associated with ADPM-Stein include: 

a) FEFs are often a subjective input; and  

b) there must be at least one repeat failure mode. 

 

6.3.6.4  Benefits.    
The benefits associated with ADPM-Stein include: 

The model provides a method for approximating the vector of failure probabilities associated 

with a complex one-shot system, which is based on the derived shrinkage factor. The benefit of 

this procedure is that it not only reduces error, but also reduces the number of unknowns 

requiring estimation from k +1 to only three. Also, estimates of mode failure probabilities, 

whether observed or unobserved during testing, will be positive. The model does not require 

utilization of the A-mode/B-mode classification scheme, as A-modes need only be distinguished 

from B-modes via a zero FEF. 

 

6.3.6.5 Estimation of Failure Probabilities.   
 The usual MLE of a failure probability is given by  

p i =
Ni

T
 

 

The problem with this estimator is that if there are no observed failures for failure mode i, then 

Ni = 0. Hence, our corresponding estimate of the failure probability is p i = 0, which results in 
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an overly optimistic assessment. Therefore, a finite and positive estimate for each failure mode 

probability of occurrence is desired, whether observed during testing or not. One way to do this 

is to utilize a shrinkage factor estimator given by  

 

p i ≡ θ ⋅ p i +  1 − θ ⋅
 p i

k
i=1

k
 

  

where θunknown) is referred to as the shrinkage factor, and k denotes the total potential number 

of failure modes inherent to the system. The optimal value of θ ∈  0,1  can be mathematically 

expressed as  

 

d

dθ
E    p i − pi 

2
k

i=1
 = 0 

                                              

 

The solution of θ is given by  

 

𝜃𝑘 =
Var pi 

 
E pi  1 − E pi  − Var(pi)

T   1 −
1
k
 + Var pi 

 

       

 

Thus, the shrinkage is given in terms of quantities that can be easily estimated for a given k; 

namely the mean and variance of the pi.   

 

6.3.6.6 Reliability Growth Projection.    
After mitigation to some, or all failure modes observed during testing, the true but unknown 

system reliability growth is defined as  

   

r T ≡  1 −  1 − di ⋅ pi 
i∈obs

  1 − pj 
j∈obs ′

 

 

where di ∈  0,1  represents the FEF of failure mode i, the true but unknown fraction reduction in 

initial mode failure probability i due to implementation of a unique corrective action. In the 

ADPM-Stein,  1 − di ⋅ pi represents the true reduction in failure probability i due to correction. 

It will typically be the case that di ∈  0,1 , as di = 0 models the condition where a given failure 

mode is not addressed (e.g., an A-mode), and di = 1 corresponds to complete elimination of the 

failure mode’s probability of occurrence.  Notice that the model does not require utilization of 

the A-mode/B-mode classification scheme, as A-modes need only be distinguished from B-

modes via a zero FEF.  

 

6.3.6.7 Estimation Procedures.  
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6.3.6.7.1  Parametric Approach.  Assume that the initial mode probabilities of failure 

p1, … , pk constitute a realization of a random sample P1, … , Pk from a beta distribution with the 

parameterization  

    

f pi ≡
Γ n 

Γ x ⋅ Γ n − x 
⋅ pi

x−1 ⋅  1 − pi 
n−x−1 

    

for pi ∈  0,1 , and 0 otherwise; where n is often interpreted as pseudo trials, and x as pseudo 

failures, and   

Γ x ≡  tx−1 ⋅ e−t
∞

0

dt 

 

is the gamma function.  In the presented model these interpretations of n and x are not utilized.  

However they are useful to clarify the particular parameterization that is being used for f pi .  
The above beta assumption not only facilitates convenient estimation of θ, but models mode-to 

mode variability in the initial failure probabilities of occurrence.  The source of such variability 

could result from many different factors, including, but not limited to:  mode failure mechanism, 

variation in environmental conditions, manufacturing processes, operating procedures, 

maintenance philosophies, or a combination of these. Based on the beta assumption with 

parameterization of f pi , the associated mean and variance are given respectively by  

 

E Pi =
x

n
, 

and 

Var Pi =
x ⋅  n − x 

n2 ⋅  n + 1 
 

                 

The equation for estimating θk , the shrinkage factor, is now in terms of only three unknowns—

the population mean of the failure probabilities, the population variance of the failure 

probabilities, and k. The first two unknowns are approximated by the expected value and 

variance terms given above, which are in terms of the two unknown beta shape parameters.  The 

third unknown, k, is treated in two ways.  First, one assumes a value of k, which can be done in 

applications where the system is well understood.  Second, one allows k to grow without bound 

to study the limiting behavior of the model equations.  This is suitable in cases where the number 

of failure modes is unknown and the system is complex.   

 

6.3.6.7.2 Moment-based Estimation Procedure.   
Moment estimators for the beta shape parameters, per the special case where all failure 

probabilities are estimated via the same number of trials, are given by  

 

n k =
 p

u
− mu

2 

mu
2 −

p
u

T −  1 −
1
T ⋅ p

u

2
 

 

and 

x k = n k ⋅ p
u
, 
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where p
u
≡

 p i
k
i=1

k
  , and  mu

2 ≡
 p i

2k
i=1

k
   are the unweighted first and second sample moments, 

respectively. Using the above method of moments (MME) for the beta parameters with the 

equation for θk , the approximation of θk  can be expressed as  

θ k =
1

 
n k
T
  1−

1

k
 +1

 . 

 

Using this, the moment-based shrinkage factor estimate of pi for finite k is then given by  

   

p  k,i = θ k ⋅ p i +  1 − θ k  
N

k ⋅ T
  

 

where  N ≡  Ni
k
i=1  is the total number of failures observed in T trials.  In the notation above,  

p  k,i  denotes the method of moments estimate of p k,i.   Let the total number of observed failure 

modes be denoted by m =  obs , which implies that there are  obs′  = k − m unobserved failure 

modes. Then the MME-based reliability growth projection for an assumed number of failure 

modes k is given by  

 

r  k  T =   1 −  1 − di
∗ ⋅ p  k,i ∙  1 −  1 − θ ∞ ⋅  

N

T
  

𝑘−𝑚

i∈obs
 

 

where di
∗ estimates di .  

 

 Letting k∞, the reliability projection for complex systems or subsystems is given by 

 

  r  ∞ T = limk→∞r  k T =   1 −  1 − di
∗ ⋅ p  ∞,i ⋅ exp  − 1 − θ ∞ ⋅  

N

T
  i∈obs  

 

where  

 

p  ∞,i = θ ∞ ⋅ p i,      

 

 

 θ ∞ =
T

n ∞ +T
, and 

             

 

n ∞ ≡ limk→∞n k =
 p i −  p i=1

2m
i=1

m
i=1

 p i=1
2m

i=1 −  
p i

T
m
i=1

 . 

                               

In the above    i∈obs indicates a product of the displayed factors for each observed mode i.       

 

6.3.6.7.3 Likelihood-based Estimation Procedure.   
The method of marginal maximum likelihood provides estimates of the beta parameters n and x 

that maximize the beta marginal likelihood function.              
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The finite k likelihood-based estimates  θ k  , and  p  k,i are obtained analogously to that of the 

moment based estimators, with appropriate substitution of the MLE in place of the MME. This 

provides the likelihood-based estimate of system reliability growth  

 

r  k T =   1 −  1 − di
∗ ⋅ p  k,i ⋅  1 −  1 − θ k ⋅  

N

k ⋅ T
  

k−m

i∈obs
 

              

   

It may be shown that the limiting behavior of the likelihood-based estimate for one-shot system 

reliability growth is given by  

 

  r  ∞ ≡ limk→∞r  k T =   1 −  1 − di
∗ ⋅ p  ∞,i i∈obs ⋅ exp  − 1 − θ ∞ ⋅  

N

T
   

         

where 

p  ∞,i = θ ∞ ⋅ p i   
 

θ ∞ =
T

n ∞ + T
 

                                                              

 

and n ∞   is found as the solution for the beta parameter n by numerically solving the equation 

below: 

 

   
1

n ∞ + j
 = m ⋅  

1

 n ∞ + j 
−

1

 n ∞ + j 2 ⋅   
1

n ∞ + i
 T−1

i=0

 

T−1

j=0

T−Ni−1

j=0

m

i=1

 

 

Additional details concerning this discrete projection model may be found in (Hall and Mosleh 

2008). 

 

There is also a version of the discrete projection model that addresses the more general situation 

where there may be a mix of delayed and nondelayed corrective actions.  The reference for this 

ADPM is (Hall, Ellner and Mosleh 2010).   

 

The presented ADPM could be considered a discrete version of the AMPM described in Section 

6.3.4. 
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6.3.6.7.4 Goodness-of-Fit.   
The Goodness-of-Fit of the model can be graphically studied by plotting the cumulative number 

of observed failure modes versus trials against the estimate of the cumulative expected number 

of observed failure modes through trial t given by  

 

μ  t =  
m

  
1

n ∞ + j
 T−1

j=1

 ⋅  
Γ′ n ∞ + t 

Γ n ∞ + t 
−
Γ′ n ∞ 

Γ n ∞ 
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7. NOTES. 

  

7.1 Intended Use.   

This handbook provides guidance to help in the management of reliability growth through the 

acquisition process.   

 

7.2 Superseding Information.  

This handbook is in lieu of the materials in MIL-HDBK-189, dated 24 Oct 2000, and the  

interim revision document MIL-HDBK-00189, dated 10 Sep 2009.  

  

7.3 Subject Term (Keyword Listing).  

AMSAA Crow Planning Model (ACPM) 

AMSAA Discrete Projection Model (ADPM) 

AMSAA Maturity Projection Model (AMPM) 

Fix Effectiveness Factor (FEF) 

Growth Potential (GP) 

Growth Rate 

Homogeneous Poisson Process (HPP) 

Idealized Growth Curve 

Management Strategy (MS) 

Non-Homogeneous Poisson Process (NHPP) 

Poisson Process 

Planning Model Based on Projection Methodology (PM2) 

Reliability Growth Planning 

Reliability Growth Tracking 

Reliability Growth Projection 

System Level Planning Model (SPLAN) 

Subsystem Level Planning Model (SSPLAN) 

Subsystem Level Tracking Model (SSTRACK) 

 

Changes from previous issue: Marginal notations are not used in this revision to identify change 

with respect to the previous issue due to the extent of the changes.   
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