
IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

Annex F

(informative)

Software reliability prediction tools prior to testing

Software failure rates are a function of the development process used. The more comprehensive and better
the process is, the lower the fault density of the resulting code. There is an intuitive correlation between the
development process used and the quality and reliability of the resulting code as shown in Figure F.l. The
software development process is largely an assurance and bug removal process, and 80% of the
development effort is spent removing bugs. The greater the process and assurance emphasis, the better the
quality of the resulting code, which is shown in Figure F.l. Several operational, field data points have been
found to support this relationship. The operational process capability is measured by several techniques
(see Capability Maturity Model® (CM~) [B6]9' 10' 11). Process measures of operational process capability
can be used to project the latent fault content ofthe developed code.

F.1 Keene's development process prediction model (DPPM)

PROCESS
INITIATIVES

D

OPERATIONAL
RELIABILITY

Figure F.1-lllustratlng the relationship between process initiatives (capability)
and operational reliability

Figure F.2 illustrates the defect density rate improves (decreases) as the development team's capability
improves. Also, the higher the maturity level, development organizations will have a more consistent
process, resulting in a tighter distribution of the observed fault density and failure rate of the fielded code.
They will have less outliers and have greater predictability of the latent fault rate.

The shipped defects are removed as they are discovered and resolved in the field. It has been shown fielded
code can be expected to improve exponentially over time (Cole and Keene [3], Keene [5], Keene [6], ''New
System Reliability Assessment Method" [9]) until it reaches a plateau level when it stabilizes.12 Chillarege
has reported failure data on a large operating system revealed the code stabilized after four years of
deployment on the initial release and two years on subsequent releases (Chillarege [2]).

The projection of fault density according to the corresponding Software Engineering Institute (SEI) level is
now shown in Table F.l. These fault density settings are based upon the author's proprietary experience
with a dozen programs. This spans all of the SEI categories, except for lacking a data point for SEI level-IV
programs. The SEI level V is set based upon the Space Shuttle's published performance.

9 Process improvement models that meet these criteria include the SEI CMM® model [B6].
1° Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
11 This information is given for the convenience of users and does not constitute an endorsement by the IEEE of these models.
Equivalent models may be used if they can be shown to lead to the same results.
12 In this annex, the numbers in brackets correspond to those of supporting published material in F .5.

61
Copyright© 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April1, 2011 at 11 :24 from IEEE Xplore. Restrictions apply.

.... -.... ,.Q
~

,.Q
0 ...
~

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

SEILevel V

Figure F.2-lllustratlng projected design defect density as a function of the development
organization's design capability, as measured In terms of CMM capability

The latent fault densities at shipment are shown as a function of the SEI development maturity level in
Table F.l.

Table F.1-lndustry data prediction technique

Maturity prome Design fault density
Defect plateau level for

SEI'S 48 months after initial delivery
Nov.1996 faults/KSLOC

CMMievel
542 Organizations (all severities)

or 24 months following
subsequent deliveries

5 Optimizing: 0.4% 0.5 1.5%
4 Managed: 1.3% 1.0 3.0%
3 Defined: 11.8% 2.0 5.0"/o
2 Repeatable: 19.6% 3.0 7.0%
1 Initial: 66.9% 5.0 10.0%
unrated The remainder of >5.0 not estimated

companies

Keene's development process prediction model (DPPM) correlates the delivered latent fault content with
the development process capability. This model can be used in the program planning stages to predict the
operational SR. The model requires user inputs of the following parameters:

Estimated KSLOCs of deliverable code

SEI capability level of the development organization

SEI capability level of the maintenance organization

Estimated number of months to reach maturity after release (historical)

Use hours per week of the code

Percent fault activation (estimated parameter) represents the average percentage of seats of system
users that are likely to experience a particular fault. This is especially important (much less than

62
Copyright@ 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1. 2011 at 11:24 from IEEE Xplore. Restrictions apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

100%) for widely deployed systems such as the operating system AIX that has over a million seats.
This ratio appears to be a decreasing function over time that the software is in the field. The early­
discovered faults tend to infect a larger ratio of the total systems. The later removed faults are more
elusive and specialized to smaller domains, i.e., have a smaller, and stabilizing, fault activation
ratio. A fault activation level of 100% applies when there is only one instance of the system.

Fault latency is the expected number of times a failure is expected to reoccur before being removed
from the system. It is a function of the time it takes to isolate a failure, design and test a fix, and
field the fix that precludes its reoccurrence. The default on this parameter is as follows:

SEI level V: Two reoccurrences

SEI level III and level IV: Three reoccurrences

SEI level I and level II: Five reoccurrences

Percent severity 1 and severity 2 failures (historical)

Estimated recovery time (MTTR) (historical)

F .2 Rayleigh model

The Rayleigh model uses defect discovery rates from each development stage, i.e.; requirements review,
high level design inspection, etc., to refine the estimate the latent defect rate at code delivery. This model
projects and refines the defect discovery profile improving the projection of the estimated number of
defects to be found at each succeeding development stage up to product release. One popular
implementation of the Rayleigh model is the software error estimation procedure (SWEEP) released by
Systems and Software Consortium, Inc. (SSCI).

NOTE-For example, the executable code for the Rayleigh model is provided in Metrics and Models in Software
Quality Engineering [4].

The input data are the defect discovery rates found during the following development stages: high level
design, low level design, code and unit test, software integration, unit test and system test. The defect
discovery profile is illustrated in Figure F .3.

The SWEEP model refines the initial Keene model process-based estimate. The Figure F .4 shows the
reliability growth curve from the Keene model can be beneficially applied to the latent error estimate of the
SWEEP model.

NOTE 1-The reliability estimate provided by the Keene model gives an early (in development) reliability estimate to
SR. This initial estimate can next be subsequently refmed by the Rayleigh model incorporating actual development data
defect rates collected at each process stage of development, i.e., requirements, high level design, low level design,
code, software integration and test, system test

NOTE 2-The Rayleigh model's projected latent defect density can then be extrapolated fOJWard in time using the
Keene model fault discovery and plateau profile. This is shown in Figure F.4 and explained in the following paragraph.

Figure F.4 illustrates the data fusion of the prediction models. Prior to the three steps in this process, there
is a step involving an a priori estimate of the latent fault rate and its associated field failure rate of the code.
This is accomplished by the Keene process based prediction model. Once the code is under development
and subjected to inspections, reviews, and tests, the Rayleigh model can better map the actual projected
defects. This prediction process is further tuned by applying the exponential fault discovery and removal
profile of the Keene model.

63
Copyright@ 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1. 2011 at 11:24 from IEEE Xplore. Raalrlcllons apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

IT II IT •
Development Phase

Figure F.3-lllustrative Rayleigh defect discovery profile over the development stages

Progressive Software Reliability Prediction
r------------------------------------

Steps:
1) Collect Data:
Get fault rates for
defect data profile.

2) Curve fit:
Use Rayleigh Model to
project latent fault
density, Ji, at delivery.

Defect Data from ..-----...,
earlier development I System Test
phases

fault density

Ji =Latent fault density
at deli very.

3) Predict Steady-
State MTBF: Develo

Insert observedfi into fir: ::=':>> Operational
Keene's model for , MTBF
operational MfBF profile. L...::=====:.

t

Figure F.4-Progresslve SR prediction

64
Copyright@ 2008 IEEE. All rights reserved.

Authorized licensed UM limited to: IEEE Xplore. Downloaded on April1, 2011 at 11 :24 from IEEE Xplore. Restrictions apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

F .3 Application of Keene and Rayleigh models

F.3.1 Software reliability estimates

The concerted application of the reliability models, DPPM, SWEEP, and CASRE, makes the best use of
whatever data is available to predict the code reliability at the various stages of development. The reliability
models in the CASRE tool suite are preferred for SR prediction, but these models require operational code.
Their predictions are based upon intra fail times. The Keene DPPM provides an a priori reliability estimate
that is largely based upon the capability level of the developing organization. It also provides a fault
discovery and removal profile that converts the latent fault content at delivery to an observed user­
experienced failure rate. The Rayleigh model correlates the rate of defects found throughout the
development process to the expected latent error content. So the Keene model, the Rayleigh model, and the
CASRE tool suite are progressively applied improving the failure rate estimate of the code.

The Keene DPPM gives the developing organization an early estimation of the risk that code will not meet
reliability expectations or to assure the delivery of more reliable code. It applies more attention to the
development history to better estimate the model parameters such as the expected failure latency of the
code. The development organization can quantify its opportunity for delivering more reliable code by
improving its development capability. Aerospace- and military-based companies usually know their SEI
capability level so applying the Keene DPPM is a straightforward process. Commerc.ial companies can look
at the SEI CMM rating criteria and reasonably estimate their current capability level and also see what they
can do to improve their process. There is the old axiom: ''what gets measured, gets improved." The Keene
DPPMjust quantifies the expected return of investment in terms of reliability improvement for investing in
process improvement.

The SWEEP model allows the developer to critically examine the quality of his process prior to test. It
makes use of the discovery rate of defects found in reviews and inspections throughout the development
process. The projected latent defect content will be best when there is a lower profile of defects found and
when the rate of defect discovery is peaked earlier in the development process.

The CASRE reliability tool suite gives the best estimate of operational reliability of the code since it is
based upon observing actually operating code. There is a caveat here. Software improves during test as
defects are exposed and removed. It is often said that "software learns to pass its tests." This is true and
also beneficial to the end user so long as the testing adequately represents the end user's actual application.
So the quality of the testing experience depends on how well the customer's operational profile is known
and replicated in the test suite. There is another limitation to basing the operational failure rate on actual
test data. That is, the major problem of field failures lies in requirements deficiencies. The testing's purpose
is to verify that the code meets the product specifications. Requirements problems that escape the
specification will not be caught in test. So each reliability prediction method has its limitations as well as its
application strengths.

There is benefit in using all of these reliability models and combining the results as depicted in Figure F.4.
They provide a reliability focus at each point in the development process.

F.3.2 Development process model

Government contractors have made use of the Keene DPPM for over a decade and have reported favorable
results (Bentz and Smith [1], Peterson [7], Peterson et al. (8), Smith (10)) This model is best used in
conjunction with SWEEP and CASRE as previously stated. The use of the model is straightforward and
intuitive. It calls out experience factors for the developer to pay attention in the development process, such
as the failure rate latency. The failure rate latency is the expected number of times a failure is likely to
occur before it is isolated to a fault and that fault removed.

65
Copyright© 2008 IEEE. All rights reserved.

Authorized licensed usa limited to: IEEE Xplono. Downloaded on April 1, 2011 at 11 :24 from IEEE Xplono. Restrictions apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

275

250

225
IIJ

E 200 .!!
.a
0 175 ...
D.

• 150 ...
• :. = 125 0
U)

• 100 > ;::
.!! 75 ::II

E
::II 50 0

25

• Cumulative software problems ..
~ - Generalized Poisson estimate

~
~

~· / .
./

/
/

:'
0

.... 00 00 00 00
G) G) ~ G) G) G) G) ~ G)

I I I I I I I
aJ a. - > u c .a
::II • u 0 • • • • a.
c U) 0 z 0 .., IL ::E c

Figure F.S-CASRE results for DDS tactical software problems by month

F.3.3 SWEEP predictions

The SWEEP model program, written by the Software Productivity Consortium, implements mathematical
models to predict software fault rates. SWEEP uses software error data obtained from reviews, inspections,
and testing throughout the development cycle to predict the succeeding number of errors that will be found
later. It also estimates the latent fault content at delivery. SWEEP has the following three modes of
operation: a time-based model, a phase-based model, and a planning aid. All three models use a two­
parameter Rayleigh distribution to make predictions of the rate of discovery of the remaining defects in the
software. SWEEP's time-based model was used for this analysis because software was being coded, tested,
integrated, and retested simultaneously. After testing began, software error data was obtained from
software problem reports in real time and grouped into months. As suggested in the SWEEP User Manual,
the number of problems per month was normalized to errors per 100 KSLOC to account for the fact that the
amount of software being tested was increasing.

F.3.4 Combined results

To easily compare and integrate all the model results, they are plotted on one graph. Since all three models
could provide estimates of software errors remaining, it was decided to plot this on the vertical axis. For the
CASRE curve, the errors remaining were calculated by subtracting the software problems from CASRE's
estimate of the total number of errors. To match the SWEEP results, the CASRE results were also
normalized to errors per 100 KSLOC. The development process model curve was easily plotted on the
graph since it is based on errors per KSLOC. For the SWEEP curve, the errors remaining were calculated
by subtracting the software problems from SWEEP's prediction of the total number of errors present.
Figure F .6 shows the results of all three models. The percentages shown indicate the fraction of the total
lines of code that were present during periods before September 1997. Note that the CASRE and SWEEP
actuals differ only because the CASRE and SWEEP estimates of the total number of errors are different.
The development process model curve would be even closer to the others if a few months of testing had
been assumed before starting it. At least in this case, it seems clear that SR can be predicted well before
system integration testing.

66
Copyright@ 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2011 at 11 :24 from IEEE Xplore. Restricllons apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

The graph in Figure F .6 shows that the reliability models are trending in a similar pattern. The DPPM
model (illustrated as the "Development Process Model" in that graph, underestimates the remaining
software error content by approximately 30%. This error content may vary between developing
organizations and between projects. There is an opportunity for developing organizations to pay attention to
their modeling results and compare these to actual field reliability results. Several models can· then be
normalized or refined for better prediction capability.

700 ...
.,e.~~ .,

U 600 ~~~-------._A~~--~ g,e. , -
:ill::_ '!" g 500 ~--------------~-A~~~~~~~ ~-r-~.------.,e.-------------------4

"'"'"-··= m '....._.a.
c ~0 r---------------------------------------~~~--------------~
c ~-, • ·;;; -
~ • SWEEP actuals ::--~,
a: 300 1-- ; • ~ ...
:! - - SWEEP prediction •• • ••
0 ·~

Ji 200 r- • CASRE actuals •••• ••
CD
ll: = 0 , 100

0

1--

co .,.
.Q
CD
u..

- Generalized Poisson estimate

• • • · Development Process Model

co co co co co co co co co co
~ ~

.,. .,. !
.,..,..,. .,. .,.

~
.,.

:::.. c . . . > u .Q m a.- c .. a. .. ::II
::II ::II CD U 0 CD .. CD

:I! c(:I! .., ..,
c(U)O z c .., u..

.... GO
~ ~

.,.
~ !

.,..,..,. .,. .,.
~ :::.. ... > u c ma.- c .. a. .. ::II

::I ::I CD U 0 CD ..
:I! c(:I! .., ..,

c(U)O z c ..,

...

GO GO GO .,.
~ ~ .Q

CD .. a.
u.. :I! c(

© 1999 IEEE. Reprinted, with permission, from the IEEE and Samuel Keene (author), for his paper presented at the
Tenth International Symposium on Software Reliability Engineering.

Figure F.6-Combined results for DDS tactical software problems by month

F.4Summary

The Keene development process model provides a ready model to estimate fault content and the resulting
failure rate distribution at requirements planning time. It rewards better process capability of the developing
organization with lower fault content and projected better field failure rates. This model requires the
developer to know some things about his released code experience to fill in all the model parameters. It is
now being popularly applied by several defense and aerospace contractors.

The Rayleigh SWEEP model is useful in projecting the number of defects to be found at each development
stage. This helps in resource planning and in setting the expectation for the number of faults to be
uncovered at each phase. It uses the defect data discovery profile to refine the initial Keene model
prediction, for projected latent defects at delivery.

Both the Keene DPPM and the SWEEP Rayleigh model are useful additions with the CASRE test suite.
They round out the reliability prediction tool kit and provide a continuing reliability focus throughout the
development cycle. This continuing reliability focus throughout the development process will promote
delivering and assuring a more reliable software product.

67
Copyright@ 2008 IEEE. All rights reserved.

Authorized lloensed use limited to: IEEE Xplore. Downloaded on April 1, 2011 at 11 :24 from IEEE Xplore. Restrictions apply.

IEEE Std 1633-2008
IEEE Recommended Practice in Software Reliability

F .5 Supporting published material

[1] Bentz, R., and Smith, C., "Experience report for the Software Reliability Program on a military
system acquisition and development," ISSRE '96 Industrial Track Proceedings, pp. 59--65.

[2] Chillarege, R., Biyani, S., and Rosenthal, J., "Measurement of failure rate in widely distributed
software," 25th Annual Symposium on Fault Tolerant Computing, IEEE Computer Society, June 1995.

[3] Cole, G. F., and Keene, S., "Reliability growth of fielded software," ASQC Reliability Review,
vol. 14, pp. 5-23, Mar. 1994.

[4] Kan, S. H., Metrics and Models in Software Quality Engineering, Reading, MA: Addsion-Wesley
Publishing, 1995, p. 192 (Rayleigh model discussion).

[5] Keene, S. J., "Modeling software R&M characteristics," Parts I and II, Reliability Review, June and
September 1997.

[6] Keene, S. J., "Modeling software R&M characteristics," ASQC Reliability Review, Part I and II,
vol. 17, no. 2 and no. 3, June 1997, pp.13-22.

[7] Peterson, J., "Modeling software reliability by applying the CASRE tool suite to a widely distributed,
safety-critical system," lith Annual ISSRE 2000, practical papers, San Jose, CA, Oct. 8--11, 2000.

[8] Peterson, J., Yin, M.-L., Keene, S., "Managing reliability development & growth in a widely
distributed, safety-critical system," 12th Annual ISSRE 2001, practical papers, Hong Kong, China,
Nov. 27-30,2001.

[9] Reliability Analysis Center and Performance Technology, ''New System Reliability Assessment
Method," IITRI Project Number A06830, pp. 53--{;8.

[10] Smith, C., NCOSE Symposium Proceedings, St. Petersburg, FL, June 23, 1998.

[11] Software Productivity Consortium, "Software Error Estimation Program User Manual," Version
02.00.10, AD-A274697, Dec. 1993.

[12] Uber, C., and Smith, C., "Experience report on early software reliability prediction and estimation,"
Proceedings of the 1Oth International Symposium on Software Reliability Engineering, practical papers,
Boca Raton, FL, Nov. 1-4, pp 282-284.

68
Copyright@ 2008 IEEE. All rights reserved.

Authorized llcanaed use llmllad to: IEEE Xplore. Downloaded on April 1, 2011 at 11 :24 from IEEE Xplore. Restrictions apply.

