
Strategy for Applying Software Reliability
Growth Models (SRGM) to DOD Systems

Andy Long
Office of the Secretary of Defense (OSD),

Director, Operational Test & Evaluation (DOT&E)/Science Advisor
Scientific Research Corporation

January 2013

1

Purpose

2

Develop methodology
for effectively
applying software
reliability growth
models (SRGM) to
track and predict
software reliability
growth by applying
categorizations of
software usage in DoD
systems.

"All Models are Wrong - Some are Useful."
George E. P. Box

Background

3

• Software issues are common in programs of all types, and can
often result in systems being rated as not operationally effective
or not operationally suitable.
– Between 1997 and 2012, 12% of systems were found not reliable in IOT&E

as result of failure modes attributed to software.

• Tasking from OSD/Dr. Catherine Warner, DOT&E Science Advisor:
– Improve reliability tracking and growth modeling for all programs that

incorporate software with focus on software centric systems, by allowing
Program Managers (PMs) to:

• better determine whether the current system state is sufficient for a product
release;

• determine if the release date should be deferred if existing software issues
require resolution and corrective actions;

• Make more informed tradeoffs during earlier development phases to
optimize reliability within program constraints.

Categorizations of Software Usage Systems:
Hybrid

4Hybrid Systems

(Where 2:3 means 2 are needed
of 3 available assets)

• Modeled using traditional reliability growth modeling techniques for HW centric
systems, because functionality results from HW and SW working together.

• Difficult to separate SW related failure from the function it relates to and the
HW it controls

• Reliability modeling of these systems is well-described by log-Poisson Non-
Homogeneous Poisson Process (NHPP) models in the relation to time (e.g., the
AMSAA Maturity Projection Model) due to their simplicity, convenience, and
tractability.

Categorizations of Software Usage Systems:
Software Centric and Space Systems

5Software Centric and Space Systems

(Where 2:3 means 2 are needed of 3
available assets)

• Use similar probabilistic models as do hybrid systems, but differ in that SRGM
use design faults as their source for failures.

– Design faults are typically usage dependent and time independent.

• SRGM specify the general form of the dependence of the failure process on the
principal factors that affect it: fault introduction, fault removal and the
operational environment.

• Space real-time data networks are very comparable to software centric systems
for reliability modeling.

– Satellite ground control centers use the same hardware and software
infrastructures as conventional information technology applications.

Approach

6

• Leverage existing work to model software reliability
– IEEE/AIAA P1633™ 2008, Recommended Practice on Software

Reliability
– Promotes a systems approach to software reliability predictions

– Provides a sequence of steps for assessing software reliability that is
independent of specific development processes and SWRGMs.

• Use readily available tools: "defect density" models;
"software reliability growth" models to estimate reliability
during design and integration testing

• Focus is on reliability growth modeling for software centric
and space systems

Approach

Integration of IEEE 1633 into Development
Process

7Approach
* Thousand Source Lines of Code (KSLOC)

* *

*

* Computer Aided Software Reliability Estimation (CASRE)* Software Error Estimation Program (SWEEP)

Step 1: Capability Maturity Model
(Keene Model)

Assumption
• SEI Development Level Correlate to

Latent Faults

Enables
• Transforms the latent fault density into in

an exponential reliability growth curve
over time to estimate reliability

Data
• SEI level for the developing organization,
• Number of months for the software failure

rate to stabilize,
• Number of failure replications expected prior

to fault removal,
• Fault activation rate,
• Percentage of all failures that are critical
• failures, and the
• Projected run time per month.

8Capability Maturity Model

Useful to Flowdown or Decompose Requirements to Lower Tiers

SEI process capability levels
Level 1: Initial (adhoc)

Level 2: Repeatable (policies)

Level 3: Defined (documented)

Level 4: Managed (measured
and capable)

Level 5: Optimized

Theory
• The better the process capability ratings,

the better the delivered code will perform

Step 2: Rayleigh Models/Software Error
Estimation Program (SWEEP) Capabilities

Theory
• Rayleigh Model:

Weibull
distribution with
shape parameter,
m = 2.

Assumptions
• The defect rate observed during the

development process is positively
correlated with the defect rate in the field.

• Given the same error injection rate, if more
defects are discovered and removed earlier,
fewer will remain in later stages.

Enables
• Predicting and tracking the rate at which

defects will be found;
• Predicting the latent defect content of

software products;
• Analyzing estimated errors injected in

each phase of the software development
cycle;

• Measuring percentage of critical failures

Data
• Data is typically collected using

Software Trouble Reports (STR).
• Data can be organized by development

phase or time increments.

9Rayleigh/SWEEP Tool

Useful To Predict the Software’s Latent Fault Density

Step 3: Computer Aided Software Reliability
Estimation (CASRE)

• Software reliability measurement tool that runs in the Microsoft Windows
environment…developed by Dr. Allen Nikora at JPL.

• The modeling and analysis capabilities are provided by the public-domain
software reliability package, Statistical Modeling and Estimation of Reliability
Functions for Software (SMERFS).

– the SMERFS modeling libraries have been linked into the user interface
developed for CASRE.

• CASRE is typically applied starting after unit test and continuing through
system test, acceptance test, and fielding.

• CASRE should be applied to modules for which you expect to see at least 40
or 50 failures--Experience shows that at the start of software test, modules
having more than 2K source lines of code (2KSLOC) will tend to have enough
faults to produce at least 40 to 50 failures.

10CASRE Tool Set Models

CASRE Reliability Growth Models

11Reliability Growth Models

Model Types: CASRE Model Forms: Assumptions:
I. Predict Time Between Failures Execution Time Models
Input Data (Typically from Problem Reports):
• Error Number (integer)
• Time since last failure (floating point)
• Error Severity (integer)
Parameters (for most models):
µ(t)=αF(t), wh: α is the expected no, of defects and
F(t) is a CDF; F(0)=0, F(∞)=1, µ(∞)=α

Geometric • There are N unknown software
faults at the start of testing
• Failures occur randomly
• All faults contribute equally to
failure
• Fix time is negligibly small
• Fix is perfect for each fault

Jelinski-Moranda
Littlewood-Verrall Linear
Littlewood-Verrall Quadratic
Musa Basic
Musa-Okumoto
Non-homogeneous Poisson (NHPP)

II. Predict Failures Count Time Intervals Models
Input Data (Typically from Problem Reports):
• Interval Number
• Number of Errors
• Interval Length
• Error Severity
Parameters (for most models):
µ(t)=αF(t), wh: α is the expected no. of defects and
F(t) is a CDF; F(0)=0, F(∞)=1, µ(∞)=α

Generalized Poisson (interval weight optional) • Testing intervals are independent
of each other
• Testing during intervals is
reasonably homogeneous
• Number of defects detected is
independent of each other

Schneidewind
Schneidewind (combines 1st s-1 intervals)
Shick-Wolverton
Yamada S-shaped
Non-homogeneous Poisson (NHPP)

• The exponential model is regarded as the basic form of SWRGM
– Since the early 1970s, more than a hundred models have been proposed
– Few have been tested in practical environments; even fewer are in use.

• Models currently being used by type, form, and assumptions are:

CASRE Model Selection Rules for Picking The
“Best Fit Model”

12

Rule Description
1. Estimate the model parameters using

statistical techniques such as
maximum likelihood or least-squares
methods.

The maximum likelihood technique solves
for optimal parameter values. The least
squares method solves for parameter
values that best fit a curve to the data.

2. Goodness-of-fit Test (i.e.,
Kolmogorov-Smirnov (K-S) test or Chi-
Square) on the model

Tests the null hypothesis that the
appropriate model at an alpha confidence
level of 5% fits the data. A “Yes” response
indicates the model does fit the data.

3. Prequential Likelihood Ratio (PLR) Given a prior belief that either model A or
B is equally appropriate, the PLR defines
the likelihood that model A will produce
more accurate estimates than model B.

4. Model Bias Quantifies the extent to which a model
consistently makes predictions that are
larger or smaller than those observed.

5. Model Bias Trend Determine extent bias changes over time

CASRE Model Selection

Software Reliability Assessment for an
Example System

13

• The modeled system is a navigation system. The following software modules
of varying lines of code and critical failure events were analyzed using CASRE:

• Data modeled here are for SW centric systems. Peterson et alii modeled five
software modules using both Time Between Failures and Failures Count
models. They conclude that “There was not enough data to support a high
significance level of fit for the failure count models, so without further
analysis, the inter-fail time models (Execution Time Models) are preferred by
inspection.”

• So, this example will be limited to reliability growth modeling using only the
time between failure models.

Module KSLOC # Events

A 203.9 117

B 43.3 13

C 74.8 18

D 145.9 29

Example System

Goodness of Fit and Model Ranking Results

14

Module Model Name KS
Distance

5.% Fit Significance (%) Rank Estimated Time To Failure at Last Interval (Hrs.)
(Failure Rate For Critical Priority 1,2, & 3

Failures)

A

Quadratic LV 0.0930 Yes 25.8% 1 513

Linear LV 0.1019 Yes 16.4% 2 429

B

Quadratic LV 0.2438 Yes 36.4% 1 2053

Musa- Okumoto 0.2132 Yes 53.6% 2 2491

Geometric 0.2318 Yes 42.7% 3 3411

Jelinski-Moranda 0.2141 Yes 53.0% 4 2072

Musa Basic 0.1827 Yes 75.0% 5 2320

C

Quadratic LV 0.2179 Yes 31.4% 1 2053

Musa- Okumoto 0.2053 Yes 38.4% 2 2861

Geometric 0.2507 Yes 17.5% 3 2862

Jelinski-Moranda 0.2031 Yes 39.7% 4 2861

Musa Basic 0.1929 Yes 46.3% 5 9480

D

Quadratic LV 0.1392 Yes 59.5% 1 750

Geometric 0.2356 Yes 6.7% 2 638

Linear LV 0.0809 Yes ≈ 82.5% 3 984

Selection of Best CASRE Model

Actuals vs. CASRE Tool Predictions

15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116Ti
m

e
Be

tw
ee

n
Ev

en
ts

 (H
rs

)

Event

Plot of Actual Vs Predicted
Module A

Actual Data
Predicted Model Estimates

CASRE Tool Predictions Vs. Actuals

Summary/Conclusions
• The concerted applications of the reliability models, Keene/CMM,

Rayleigh/SWEEP, and CASRE make the best use of available data to
predict the code reliability at the various stages of development.

• Simple models perform as well or better than complex models—
software reliability SMES [refs 4, 5,8] indicate the simple exponential
model tend to outperform more complex models in terms of both
stability and predictive ability.

• Execution time is the best measure of the amount of testing.
• Problem reports are a good surrogate for defects.
• The great advantage of CASRE is that it consolidates many well-

established reliability models in one place and automates the
determination of various ranking criteria for each model.

16Summary and Conclusion

What Makes A Model Useful?
1. Stability During the Test Period and Remains Stable Until the End of the Test
2. Reasonable Prediction of the Number of Defects that Will Be Discovered In Field Use

Additional Slides

17

References

18

1. Burrows Evan , Keith McGough, Sue Tisdale. "An Introduction to
Software Reliability Growth Modeling for Operational Test and Evaluation
Personnel", MITRE, Dec. 2011.

2. Gullo Lou, Software Reliability Growth Approach, Raytheon, Oct. 2008
3. IEEE Std 1633™ 2008, IEEE Recommended Practice on Software

Reliability, Jun. 2008
4. Keene Samuel, “Modeling Software R&M Characteristics,” ASQC

Reliability Review, Part I and II, Vol 17, No.2&3, Jun. 1997
5. Nikora Allen, Bill Farr et alii, CASRE (Computer Aided Software Reliability

Estimation) v3 Beta, Copyright (C) National Aeronautics and Space
Administration, Feb. 2000.

6. Peterson Jon, Sam Keene, Meng-Lai Yin. "Modeling Software Reliability
by Applying the CARE tool Suite to a Widely Distributed, Safety Critical
System", ISSRE 2001, Hong Kong, Nov. 2001.

7. Pfleeger Shari L. , Joann M. Atlee, Software Engineering: Theory and
Practice, 4th Edition, Pearson Prentice Hall, 2006

8. Wood Alan, Software Reliability Growth Models, Technical Report 96.1,
Sep. 1996

Actuals vs. CASRE Tool Predictions

19

Fraction of Non-Critical Failures Vs. Time

20

