
Software Timeliness Evaluation – Case Study

This case study refers to the notional Information Technology Program X which is a
world-wide web-based system accessing multiple databases. This case study is designed to
illustrate the complexity of comprehensively specifying and measuring a responsiveness, or
timeliness, KPP. The scope of Program X is limited to the large tan rectangle in the center of
Figure 1. The red and blue circles represent data collection points for measurement of
timeliness.

Figure 1: Program X Concept

Worldwide users access Program X services through their web browsers, accessing and
sending query requests to the central Program X web site. Program X software forms the queries
to access one or more underlying databases (not necessarily resident at the Program X site).
Query information is returned to the Program X portal, which then forms the response to the
user, finally sending the information to the user’s web browser for display on web pages.

 Data Source

A

Program X
Services include security, web portal services,
functional applications, mapping and data
visualization services, load balancing, transaction
formulation, and other services

Web Browser

Transaction

Transaction Transaction Transaction

Response
(A+B+C)

Response (A)

Data Source

B

 Data Source

C

Response (B)
Response (C)

1

2

3 4

5

6

3 4 3 4

Software Timeliness Evaluation – Case Study

2

The responsiveness, or timeliness, KPP for Program X is shown is Table 1 below.
Unfortunately common, this sort of KPP presents challenges for evaluation of Program X
performance.

Table 1. Responsiveness KPP

1. KPP 2. Threshold 3. Objective

4. Responsiveness

5. (Asset
Visibility)

6. single/multiple queries must be
accomplished in less than 60
seconds, 95% of the time.

7. single/multiple queries must be
accomplished in less than 30
seconds, 95% of the time.

There are several difficulties associated with a KPP like this:

 All queries, whether simple or complex are required to be completed in 60 seconds.
As stated in Table 1, the KPP fails to describe the number of underlying databases
that need to be accessed. The KPP also does not state how many simple and how
many multiple queries might be expected in a day, week, or month. Both of these
undefined factors will influence overall query timeliness.

 The KPP does not define the amount of data expected to be returned. It could range
from zero or one record per query to well over 100,000 records.

 The KPP does not mention the possibility that some large queries that generate
extremely large amounts of data could be satisfactorily processed during off-peak
hours.

 The KPP does not define or accommodate the differing responsiveness of external
databases that are beyond the influence of Program X. Other factors that could
influence Program X responsiveness include the placement of external data servers,
the location of users, network bandwidth, encryption, network reliability, packet
retransmission, network loading, and information assurance threats.

 The KPP does not define how the system should perform if an external data source is
temporarily inoperable or not responsive.

 The KPP can be evaluated by measuring the proportion of queries that meet the 60-
second threshold. This method gives no credit for extremely fast queries and reduces
our ability to understand how factors contribute, good or bad, to timeliness.

 Simple methods to measure responsiveness (time from red #1 to red #6, as shown in
Figure 1) might be to use a stopwatch at the user terminal. This method may be
reliable to within 1 second and inexpensive to use during testing, but is not good for
helping a PM ensure the system remains responsive after fielding. Nor is it very
useful for reconstructing network-wide symptoms and correlation of events among
sites, as it only measures elapsed time and not absolute system start and stop times.

Refinement of Requirements

Software Timeliness Evaluation – Case Study

3

Early in the development of KPPs, the requirements community, program engineers, and
the test community should draft and include more contextual information in the specification of
the KPP. This contextual information will assist in Design of Experiments methods and become
DOE factors for testing and early prototyping. Early prototyping could help characterize
achievable performance levels and help shape the KPP.

The Milestone B TEMP should describe the early prototyping and DOE approach to
characterize the key factors affecting the timeliness KPP. These factors and results should be
used to adjust the KPP for the Milestone C TEMP.

Continuation of the Program X Case Study

Suppose that early testing revealed that three factors (the number of underlying databases
needing to be queried, the location of the user (overseas or CONUS), and the number of records
to be returned by the query) had a significant effect on query response time (RT). Suppose also
that we learned the following information:

 Factor 1: When more than one database is queried, there is an increase in RT of 10
seconds per database queried.

 Factor 2: RT for queries from overseas users take roughly two times as long as
queries submitted by CONUS users.

 Factor 3: RT increases 1 second for every 100 records returned.

Using these early test results, the KPP could be refined using a formula based on these
three critical factors plus some constant K.

RT <= User Loc * [(10 * number of databases) + (Records Returned / 100) + K]

In this formula for the KPP, we could apply an overall multiplier of 2.0 for an overseas
user, compared to 1.0 for a CONUS user. We could add 10 seconds per underlying database
queried for the complexity factor, and one second per 100 records returned to address the third
factor for the records returned. Then, the KPP requirement in the Milestone C TEMP could be
expressed as 95 percent of the time meeting this formula.

Unresponsive external databases could be addressed through a requirements change by
requiring the system to time-out after a period of time, and explicitly treating these responses as
“no test” for purposes of meeting the timeliness KPP. Whether the system correctly timed out
and responded accordingly to the user would be tested as a separate measure. The program
manager could also implement a status board showing the up/down status of each underlying
database to help address this problem (this was done for Program X). When considering overall
mission accomplishment, too many instances of system timeout due to underlying database
failures would negatively affect overall mission accomplishment, and thus they cannot simply be
ignored. Other methods of addressing slow response time may be to include progress bars or the
ability to spool the query or run it in batch mode. These considerations are all worked
collaboratively between the user requirements representatives and the program engineers.

Software Timeliness Evaluation – Case Study

4

The next improvement would be to provide the OTA with historical data concerning the
relative frequencies of various types of queries, and amounts of data expected to be returned.
This would allow the OTA to construct a scenario for OT that would exhibit operationally
realistic exercising of the system. For example, guidance on testing the KPP might state that
simple queries are executed against Databases A, B, and C in a 20, 30, and 50 percent ratio, and
that complex queries comprise 10 percent of the total queries and involve only two of the three
databases (again at the summed ratio similar to the simple queries). Number of records returned
could be expressed using a histogram, based on historical data. Network loading and contention
could be based on historical data, if known.

Table 2 shows the number of data samples required to meet various pass/fail criteria,
assuming an 80 percent level of confidence.

Table 2. Binomial Samples Needed

 Threshold Success Rates

Failures 80% 90% 95% 98% 99%

0 8 16 32 80 161

1 14 29 59 149 299

2 21 42 85 213 427

When each data sample containing the response time data is reduced to a binary
“pass/fail” data point, much information is lost. Simplistic methods of specifying performance
requirements that reduce continuous data to binary pass/fail data may be acceptable for
Milestone B TEMPs, but should be avoided in Milestone C TEMPs. For software systems
operating in a network environment, response times should not be assumed to be normally
distributed. Figure 2 shows a histogram for queries accessing a certain database that returned in
50 seconds or less. The tail of this data, not shown, would extend out to include two points just
over 360 seconds (reflecting the timeout value). This data is not normally distributed. Early
prototyping and engineering studies, combined with legacy data, should be used to better
characterize expected timeliness data. This should allow specifying and testing response time
requirements using continuous methods, thereby reducing sample sizes. Figure 3 shows a
histogram for queries accessing a different database, and data has been binned in the histogram
in groups of 10 seconds to better show that while the tail seems to get smaller and smaller, out at
the “timeout” point, there can be a significant number of data samples (18 samples in this case).
It is recommended that this aspect of system performance be considered for Critical Technical
Parameter testing, and carefully addressed during operational testing if the frequency of timeouts
affects overall mission accomplishment.

Software Timeliness Evaluation – Case Study

5

Figure 2. Data Histogram (Each bar shows number of queries returning in some
number of seconds, as measured on the X axis)

Figure 3. Data Histogram Showing Timeout (Each bar shows number of queries
returning in some number of tens of seconds, as measured on the X axis)

The next suggested improvement concerns how to measure and report timeliness, not
only during a few snapshots in time during OT, but also after fielding. If responsiveness is truly
a KPP, then it is worth measuring and reporting on a monthly or quarterly basis, and should be
accomplished by non-intrusive, automated means.

The Program X servers would be expected to be able to capture computer system time
data and also the key factors affecting timeliness at the blue measurement points, but probably
not at the red measurement points. System timeliness requirements are specified from an
operational mission context which is what the user sees (meaning at the red points). The OTA
can easily collect timeliness measurements at the blue points #2, #3, #4, and #5, but this does not
represent the total waiting time experienced by the user, and hence cannot be used to fully
answer the KPP requirement. Stopwatch methods tend to be limited to capturing relative elapsed
time, and do not account for clock synchronization issues throughout the network. Thus, they
are not very helpful for examining system performance across a network. They are also not
conducive to continued performance monitoring post-fielding.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Seconds

Frequency

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

10 Seconds

Frequency

18 Timeout Points that
returned in 480 seconds

Over 500 queries that
returned in less than 10
seconds

About 80 queries that
returned in more than 10,
but less than 20 seconds

Over 180 queries that
returned in 2 seconds

Software Timeliness Evaluation – Case Study

6

To help overcome the need to use stopwatches, there are commercially available methods
for measuring web site performance. Two methods of gathering response time data are from
Field Metrics and Synthetic Measurement. Field Metrics measure response time from real user
traffic but have the advantage over stopwatch data in that they capture start and stop times using
the system clock. This method relies on instrumentation of the pages, or toolbars to collect and
log data. Field Metrics methods should be encouraged for Milestone C measurements that are
truly of KPP importance, and these methods also allow continued monitoring of timeliness data
post-fielding. Recording of user screens using the Defense Collaboration Services (DCS)
collaboration tool is a field metrics method that can also be used to collect full round-trip
response time during testing. However, use of DCS puts significant extra load on the system and
cannot be used for monitoring system performance on an on-going basis. It can, however, be
very useful for system debugging. Synthetic Measurement involves loading pages in one of a
myriad of tools designed to collect metrics. Synthetic Measurement may be appropriate for early
prototyping work when trying to identify the DOE factors, but it is important to collect the
measurements over operationally realistic environments and not just in a lab. Finally, if system
performance is critical for a network system, it is recommended to also test for overall system
clock synchronization throughout the network being within a specified delta of Global
Positioning Time.

